
mathworks.com

© 2018 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of their respective holders.

Deep Learning with MATLAB

Pretrained NetworksChoosing an Architecture

Learn more: mathworks.com/solutions/deep-learning

Training Options Validation Improving Accuracy

Training Options

predict Returns probabilities belonging to
each class
classify Returns labels and probabilities
belonging to each class
[Ypred,scores] = classify(net,X);

Network state can be captured and updated
with predictAndUpdateState and
classifyAndUpdateState

Improving model accuracy depends on the
task and the data. Common approaches
include:

Network architecture:
• Use pretrained models from community

experts
• Update layers and adjust parameters

Data preparation:
• Add data
• Training/validation/test split
• Normalize data
• Remove outliers
• Balance classes (add weights)

Hyperparameter tuning:
• Tune the training parameters with Bayes

optimization
• Set up problem with
optimizableVariable

• Write function calling model and options
• Perform optimization with bayesopt

QUICK START GUIDE

Execution
Environment

Parallel, GPU, multi-
GPU, auto (default)

MaxEpochs
An epoch is one full
pass over entire
training set

MiniBatchSize
Subset of training set to
evaluate gradient and
update weights

InitialLearnRate
A higher initial rate will
speed up training but
may diverge

LearnRateSchedule
Drop the learn rate
over time by a factor

ValidationData Validate during training

ValidationPatience
Stop training if
accuracy is repeated a
certain (saves time)

Inference

State

Visualization
Several forms of validations and visualizations
can be specified through trainingOptions

Plots Visualize progress

Verbose
Set to true to display
training progress each
epoch

VerboseFrequency How often to display

OutputFcn Custom function

CheckpointPath
Directory to save model
each epoch obj = bayesopt(ObjFcn,OptVars,…);

Import Networks

The toolbox provides several functions for exporting
models and layers. More can be found on GitHub
and File Exchange.

Import layers
importCaffeLayers

importKerasLayers

Import network
importCaffeNetwork

importKerasNetwork

Export exportONNXNetwork

Pretrained Models
From Add-on Explorer, use one of the following
commands to import a network:
alexnet

googlenet

vgg16

vgg19

resnet50

resnet101

inceptionv3

squeezenet

Convolution Neural Network (CNN)
• Image data: classification, detection
• Common layers:

• Convolution layer
• Max pooling
• ReLU layer
• Batch normalization

• Train from scratch or use transfer learning
with pretrained models

Long Short Term Memory (LSTM) Network
• Sequential data: time series forecasting,

signal classification, text prediction
• Common layers:

• LSTM layer
• BiLSTM layer

• Perform regression or classification tasks

Use the Deep Network Designer app
to interactively create and
evaluate networks

Deep Learning Toolbox™ provides built-in functionality for creating, training, and validating deep neural networks. This reference shows
some common use cases. For additional examples, visit the documentation: mathworks.com/help/deeplearning/examples.html

https://www.mathworks.com/
http://mathworks.com/solutions/deep-learning.html
https://www.mathworks.com/matlabcentral/fileexchange/
https://mathworks.com/help/deeplearning/examples.html

