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1: Objective and Executive Summary

• The model interpretability has been one of the obstacles for the widespread application of neural network 
models in the financial risk management. The objective of this research is to propose an interpretable non-
linear autoregressive neural networks model by imposing business and regulatory constraints and compare 
it with the traditional linear and nonlinear autoregressive models for CCAR loss forecasting and stress testing 
under Base and Adverse macroeconomic stress scenarios.

• By leveraging a credit cards firm’s monthly write-off data for over 15 years, several linear and nonlinear 
autoregressive models have been developed. Two macroeconomic variables with lags and ratios are selected 
as the model predictors from a pool of 450 by the combination of LASSO and Stepwise regression 
algorithms. 

• The neural network models are shown to outperform the benchmarking linear autoregressive model in 
mean squared error (MSE). However, the study also found that the neural network models are vulnerable to 
over fitting, which could lead to erroneous CCAR loss forecasting as the complexity of network architecture 
increases. The model business interpretability is compromised.

• To ensure the model interpretability, this study suggests that it is feasible to estimate a constrained model 
under business and regulatory requirements. By comparing to the models without the constraint, the results 
suggest that the constrained model ensures the model interpretability at a small cost of the model 
performance in MSE. It is insufficient to measure neural network models by MSE alone for the purpose of 
CCAR credit loss forecasting without ensuring its interpretability.
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2: Modeling Dataset

• The dataset is a time series with the model dependent variable as monthly loans write-off from a US credit 
cards firm between January 2000 and September 2014. 

• The write-off peaked around 2001-2003 and 2009-2011 due to the internet bubbles and recent sub-prime 
mortgage induced economic downturn.

• Two model predictors are disposable income and non-farm employment, selected from 450 macroeconomics 
variables, and sourced from Fed Reserve Bank of St. Louis and others with the transformation of lags and ratios. 

• CCAR scenarios include Base and Adverse, starting from October 2014 to December 2016.
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2: Selection of Modeling Variables
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• A large number of LASSO models are developed with varying degrees of regularization parameter Lambda. 

• The variables selected by each of the LASSO models are further being fed into Stepwise algorithm to select 
candidate models with the significant variables.

• The final model variables are selected by comparing the model R-Squares, multicollinearity (VIF), bivariate 
correlation, and variable sign consistency with the business and regulatory requirement.

 𝜷 = arg min
𝜷

(𝒚 − 𝒙𝜷)𝟐

subject to 𝜷 < 𝒕

LASSO Regression RIDGE Regression
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Table 1 Variable Description Estimate SE tStat pValue Sign VIF Corr_xy

Intercept R Squares = 0.935 1.8895 0.0411 45.9968 <0.0001 0 0 0

x35 Lag3 of Disposable Income ($ billion, SAAR) -0.8828 0.0413 -21.3581 <0.0001 1 1.0480 -0.6192

x426 Ratio23 of Nonfarm employment (# million, SA) -7.1407 0.2008 -35.5554 <0.0001 1 1.0480 -0.8577



3: MATLAB’s REGARIMA Autoregressive Model (Benchmarking)
Model Estimates and Specification Tests (Sample Jan 2002- Sept 2014)

• The model specification tests indicate that ARMA(2,2) model appears to fit the dataset well at 95% confidence 
level (Gaussian innovations)
1. Test for regARIMA Stationarity    [ok]
2. Test for regARIMA Auto Correlation    [ok]
3. Test for regARIMA Normality [ok]
4. Test for regARIMA Heteroscadesticity    [ok]
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Regression with ARMA(2,2) Error Model (Gaussian Distribution): 

Table 2        Estimate     Standard-Error  T-Statistic     P-Value  

Intercept        1.8031        0.1111       16.2260       <0.0001

AR{1}            1.5220        0.0763       19.9460       <0.0001

AR{2}          -0.6420        0.0749       -8.5743      <0.0001

MA{1}         0.3173        0.0845        3.7554      0.0002

MA{2}        0.3944        0.0861        4.5816       <0.0001

Beta{Income}    -0.7968        0.1129       -7.0589      <0.0001

Beta{NFE}       -7.0056        0.4837      -14.4830 <0.0001

Variance        0.00016       <0.0001     7.6916 <0.0001
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3: MATLAB’s REGARIMA Autoregressive Model (Benchmarking)
Back-Testing (Sample Jan 2002- June 2012)

• After excluding the most recent 27 months as OOT sample, the performance of REGARIMA model with 
ARMA(2,2) error remains stable, as indicated in the back testing of the model specification tests and the 
parameter significance.

• The model specification tests at 95% confidence level (Gaussian innovations) yield
1. Test for regARIMA Stationarity    [ok]
2. Test for regARIMA Auto Correlation    [ok]
3. Test for regARIMA Normality [ok]
4. Test for regARIMA Heteroscadesticity    [ok]
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Regression with ARMA(2,2) Error Model (Gaussian Distribution):

Table 3        Estimate   Standard-Error   T-Statistic     P-Value  

Intercept        1.9233       0.1373       14.0080        <0.0001

AR{1}            1.5083       0.0858       17.5690 <0.0001

AR{2}      -0.6426       0.0819       -7.8485 <0.0001

MA{1}       0.3016       0.0956        3.1539        0.0016

MA{2}        0.3789       0.0955        3.9695      <0.0001

Beta{Income}    -0.9243       0.1434       -6.4466      <0.0001

Beta{NFE}       -7.2098       0.5043      -14.2970        <0.0001

Variance        0.00017      <0.0001        6.6854      <0.0001
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3: REGARIMA Model Performance and CCAR Scenario Narratives

• The model’s performance in mean squared error (MSE) remains stable: 

• The model MSE in the training and full sample is 0.0046, 0.0050, respectively,

• The model MSE and MPE in the OOT sample are 0.0042 and -0.0367, respectively.

• The CCAR loss projection in Adverse scenario is twice of that in Base scenario at peak time. It also has a 
reasonable 95% confidence intervals.

• Scenario narratives: “high non-farm employment leads to low write off”, “high disposable income leads to low 
write off”.
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4: MATLAB’s Non-Linear Auto Regressive NARXNET Model Architects

• NARXNET network architects are assessed on the following

• MSE in the training and full sample, 

• MSE and MPE in the OOT sample, 

• Model interpretability for the CCAR projection under Base and Adverse scenarios.

• An example network architect for the NARXNET model with inputs x(t), neurons (n), and feedback delays (d). 
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𝑦𝑡 = 𝑏0 + 

𝑙=1

𝑛

𝑤𝑙 𝜎𝑙 𝑏𝑙 + 

𝑖

𝑤𝑖𝑙𝑥𝑖𝑡 + 

𝑑

(𝑤𝑑𝑙 𝑦𝑡−𝑑) (1)

• b is biases 
• w is weights 
• σ is transfer function 
• l is for neurons 1,…,n
• i is for input features
• d is for feedback delays



4: An Example of NARXNET(NN=1,FD=2) Model in Training Sample

• The NARXNET closed loop model MSE is 0.0039 in the training sample, which is around 10% 
improvement over the REGARIMA(2,2) model MSE that is equal to 0.0046.

• The open loop model MSE is 0.00021, much lower than the closed loop model MSE 0.0039.
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4: An Example of NARXNET(NN=1,FD=2) Model in Full Sample

• Similar to the training sample, the loop closing leads to a lower model performance after retraining in the full 
sample from Jan 2002 to Sept 2014 (MSE increases from 0.000178 to 0.00394).

• The closed and retained model’s MSE for both the full and training sample remains quite similar.

PUBLIC 11



4: Model Residual Diagnostics for REGARIMA(2,2) and NARXNET(1,2) 

• Residuals Q-Q plots for both 
the REGARIMA(2,2) and 
NARXNET(1,2) models are 
along the straight line, 
indicating Normal 
distribution. 

• Auto and partial auto 
correlations from 
REGARIMA(2,2) residuals are 
within 2 standard deviations.

• Auto and partial auto 
correlations from 
NARXNET(1,2) residuals are 
within 3 standard deviations. 

• Residuals from both the 
REGARIMA(2,2) and 
NARXNET(1,2) models also 
satisfy ADF and ARCH tests.
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4: Forecast Comparison Under Base and Adverse Scenarios
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• A simple parsimonious model NARXNET(1,2) provides a 10%~15% lift in MSE over that of REGARMA(2,2). 

• The pattern of CCAR loss forecast in the next 27 months from both NARXNET(1,2) and REGARMA(2,2) looks 
quite similar under Base and Adverse scenarios.



5: Towards An Interpretable Neural Networks Model
Contemporaneous Relationship Between Inputs and Response

• Rewrite the model in (1) as 𝑦𝑡 = 𝑏0 +  𝑙=1
𝑛 𝑤𝑙 𝜎𝑙(𝑧𝑡), where 𝑧𝑡 = 𝑏𝑙 +  𝑖 𝑤𝑖𝑙𝑥𝑖𝑡 +  𝑑 (𝑤𝑑𝑙 𝑦𝑡−𝑑).

• The model interpretability requires contemporaneous relationship 
𝜕𝑦𝑡

𝜕𝑥𝑖𝑡
> 0 or 

𝜕𝑦𝑡

𝜕𝑥𝑖𝑡
< 0 for inputs 𝑥𝑖𝑡, where 

𝜕𝑧𝑡

𝜕𝑥𝑖𝑡
= 𝑤𝑖𝑙 and 𝜎𝑙

′ ≡
𝜕𝜎𝑙 𝑧𝑡

𝜕𝑧𝑡
,

𝜕𝑦𝑡

𝜕𝑥𝑖𝑡
=  𝑙=1

𝑛 𝑤𝑙
𝜕𝜎𝑙(𝑧𝑡)

𝜕𝑧𝑡
∙
𝜕𝑧𝑡

𝜕𝑥𝑖𝑡
=  𝒍=𝟏

𝒏 𝒘𝒍𝒘𝒊𝒍𝝈𝒍
′, (2)

• For instances, the above constraint is satisfied for NARXNET(NN=1,FD=1) and NARXNET(NN=1,FD=2). This is 
because both of the input weights are positive, the transfer function weight is negative, and 𝜎𝑙

′ > 0. Thus, 
𝑤𝑙𝑤𝑖𝑙𝜎𝑙

′ < 0 for inputs i = 1 and 2, and all observations 𝑡.
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NARXNET(NN=1,FD=2) model with 7 parameters

Parameters b wix1 wix2 wy1 wy2 b0 wl

Training Sample -0.0725 0.0311 0.0633 -0.6609 0.3485 -0.1259 -2.6393

Full Sample -0.0491 0.0362 0.0634 -0.7200 0.3809 -0.0618 -2.4467

NARXNET(NN=1,FD=1) model with 6 parameters

Parameters b1 wix1 wix2 wy1 b0 wl

Training Sample -0.5454 0.1854 0.3834 0.1325 -1.4470 -3.7988

Full Sample -0.0284 0.0349 0.0633 0.0121 -0.0962 -14.5235

• However, the model interpretability constraint may not be satisfied automatically for other NARXNET models 
with multiple neurons 2, 3, and 4 unless it is imposed during the estimation.



5: Towards An Interpretable Neural Networks Model 
Non-Contemporaneous Relationship Between Inputs and Response

• More generally, suppose the model inputs also have delays, and the model is given by

𝑦𝑡 = 𝑏0 +  𝑙=1
𝑛 𝑤𝑙 𝜎𝑙(𝑧𝑡), where

𝑧𝑡 = 𝑏𝑙 +  𝑖 𝑤𝑖𝑙𝑥𝑖𝑡 +  𝑖 𝑑 𝑤𝑖𝑑𝑙𝑥𝑖𝑡−𝑑 +  𝑑(𝑤𝑑𝑙 𝑦𝑡−𝑑).

• We can impose constraints on the following derivatives to ensure model’s desirable behaviors

1.
𝜕𝑦𝑡

𝜕𝑥𝑖𝑡
=  𝑙=1

𝑛 𝑤𝑙𝑤𝑖𝑙𝜎𝑙
′ > 0 or < 0 per business and regulatory requirements.

2.
𝜕𝑦𝑡

𝜕𝑦𝑡−𝑑
=  𝑙=1

𝑛 𝑤𝑙𝑤𝑑𝑙𝜎𝑙
′ should remain unconstrained.

3.
𝜕𝑦𝑡

𝜕𝑥𝑖𝑡−𝑑
=  𝑙=1

𝑛 𝑤𝑙𝑤𝑖𝑑𝑙𝜎𝑙
′ > 0 or < 0 depending on the relative weights of (1) and (2).

• Note that the partial 𝜎𝑙
′(𝑧𝑡) > 0 holds for the whole domain. The need for constraint (3) can be avoid if the 

search of inputs is thorough, for examples, with lags and ratios of the macroeconomic variables by LASSO 
and Stepwise algorithms.
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5: Towards An Interpretable Neural Networks Model
Performance Comparison (Neurons 1 – 4, Feedback Delays 1-2)
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• Time series model REGMARM(2,2) is the benchmarking model.

• The neural networks model performance in square root of mean squared error (rMSE) improves with the 
number of neurons and feedback delays.

• As the number of neurons increase, the constrained neural networks model performance improves slower 
than the unconstrained model.

PERFORMANCE (rMSE) Dataset Training Seeds Time Series Models One Feedback Delay NN Models Two Feedback Delays NN Models

Model Structure REGARMA(2,2) ANN(1,1) ANN(2,1) ANN(3,1) ANN(4,1) ANN(1,2) ANN(2,2) ANN(3,2) ANN(4,2)

MATLAB NARXNET Training Sample Random Default 0.0678 0.0686 0.0663 0.0384 0.0475 0.0624 0.0518 0.0332 0.0260

MATLAB NARXNET OOT Sample 0.0648 0.0775 0.0624 0.0548 0.0583 0.0624 0.1245 0.0490 0.1393

MATLAB NARXNET Full Sample Random Default 0.0707 0.0700 0.0648 0.0462 0.0387 0.0624 0.0600 0.0361 0.0375

Constrained “NARXNET” Full Sample None 0.0618 0.0538 0.0459 0.0468

• NARXNET models can yield erroneous forecasts as the model complexity increases without the constraint.
• The constrained neural network models yield sensible forecasts for all 1-4 neurons (bottom four figures).



5: Towards An Interpretable Neural Networks Model 
Forecast Comparison Under Base and Adverse Scenarios
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6: Final Remarks

• As benchmarking, a parsimonious traditional linear autoregressive model with ARMA(2,2) errors is shown to 
fit well to the time series loss dataset from a credit cards firm in US. It satisfies the model specification tests 
and produces a sensible CCAR loss forecasting and scenarios stress testing. 

• As a Machine Learning model, the neural networks model represents an opportunity to improve the 
traditional time series loss forecasting at the risk of over fitting and violating the business and regulatory 
requirements. This research demonstrates that the constrained neural networks model can be estimated at 
a small cost of the model performance under the business and regulatory requirements by minimizing the 
prediction mean squared errors (closed loop). It ensures that Adverse CCAR scenario should yield a higher 
loss than Base scenario for any neural networks architecture.

• Furthermore, other Machine Learning models such as Gradient Boosting have also been shown to provide 
the performance lift for credit risk probability of default (PD) modeling. However, it suffers from similar 
drawbacks in model interpretability as the neural networks model for loss forecasting. It is expected that a 
similar constraint can be imposed to improve the PD model interpretability by Gradient Boosting models, 
while enjoying the benefit of flexible Machine Learning models.
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