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ABSTRACT 

Production code generation with Model-Based Design 
has replaced document-based development and manual 
coding in various automotive domains such as chassis 
and powertrain. Safety-related applications are increas-
ingly developed using Model-Based Design as well. For 
these applications, software development and quality 
assurance activities within Model-Based Design must 
meet the requirements of the safety standard relevant to 
the particular domain. For in-vehicle applications, cur-
rently this standard is typically IEC 61508.  

This paper discusses workflows for developing safety-
related application software components and specific 
requirements with respect to Model-Based Design. Gen-
erally, the objectives of IEC 61508-3 influence the entire 
software development process. However, some activities 
are of particular importance. This paper is concerned 
with the following activities exhibiting certain specifics if 
they are carried out as part of Model-Based Design: 
traceability between work products, production code 
generation, dynamic testing, and design for robustness 
and reliability. 

INTRODUCTION 

Because of its ability to address software complexity and 
productivity challenges, Model-Based Design has be-
come the preferred software engineering paradigm for 
the development of application software components in 
central automotive domains such as chassis and power-
train.  

The core idea is that an initial executable graphical 
model representing the application software component 
to be developed serves as the primary representation 
throughout multiple phases of software development. 

The executable model is refined and augmented until it 
becomes a blueprint for the final implementation through 
production code generation. In addition, executable 
models can be utilized for various quality assurance ac-
tivities. 

The Simulink product family is a popular tool chain for 
Model-Based Design. Simulink and Stateflow support 
graphical modeling with time-based block diagrams and 
event-based state machines, and Real-Time Workshop 
Embedded Coder supports embedded code generation. 

In the recent past, Model-Based Design with code gen-
eration has been successfully employed to produce 
software for safety-critical applications. Examples include 
application software components of the electro-
mechanical APA steering system [JSB+08] for the 
Volkswagen Tiguan, an urban SUV. Stringent software 
development methods and techniques are already re-
quired to satisfy customer expectations and ensure the 
essential quality and reliability of any in-vehicle software. 
However, given the safety-related nature of some ad-
vanced automotive systems, application of techniques 
above and beyond existing software development prac-
tices must be considered for these applications 
[CDJ+04]. The requirements imposed by safety stan-
dards also have to be met, and the objectives and rec-
ommendations outlined therein need to be mapped onto 
Model-Based Design. 

The software development activities for a driver assis-
tance system at Carmeq were evaluated to allow ration-
alizing such a mapping. In practice, the evaluation of this 
recent project using Model-Based Design led to consoli-
dated findings that became best practice and will be in-
troduced into guidelines for future projects. In this paper 
the authors combine these project experiences with 
more general ideas on using Model-Based Design with 



 
Simulink and Stateflow for safety-related automotive ap-
plications.  

The safety standard currently relevant to automotive in-
vehicle applications is IEC 61508. Part 3 of this interna-
tional standard, IEC 61508-3 [IEC61508-3], is concerned 
with software development. In IEC 61508, software fail-
ures are viewed as the result of faults systematically in-
troduced during software development. In recognition of 
this, IEC 61508-3 defines requirements and constraints 
for the software development and quality assurance 
processes [MK06]. The degree of rigor required in these 
processes depends on the criticality of the software com-
ponent within the embedded application and is ex-
pressed in terms of safety integrity level (SIL).  

The remainder of the paper is organized as follows: First, 
an overview on Model-Based Design for IEC 61508 is 
given. Subsequent sections provide details on activities 
within Model-Based Design that are carried out in the 
context of safety-related applications: traceability be-
tween development artifacts, design and code genera-
tion considerations for robustness and reliability, and 
dynamic testing of models and generated code.  

MODEL-BASED DESIGN FOR IEC 61508 

IEC 61508, “Functional safety of electrical/electronic/ 
programmable electronic safety-related systems,” was 
developed in the 1990s as a sector-independent safety 
standard. By constraining the processes used for the 
development and quality assurance of the software, IEC 
61508-3 [IEC61508-3] attempts to reduce the number of 
faults introduced by the process and increase the num-
ber of faults revealed by the process. The standard pro-
vides detailed lists of techniques and measures with rec-
ommendations (ranging from not recommended to highly 
recommended) for each SIL.  

IEC 61508-3 dates back to 1998, when most software 
was hand-coded. As a result, it does not cover advanced 
software development technologies and must be 
mapped onto the processes and tools used in Model-
Based Design. 

An analysis of the standard at Carmeq resulted in a 
number of requirements to be fulfilled that are related to 
extraordinary challenges in the development process. 
Within this paper we cover the major aspects, which are 
from our point of view traceability between development 
artifacts, modeling and code generation, and dynamic 
testing. 

TRACEABILITY CONSIDERATIONS 

In general, tracing dependencies among several devel-
opment artifacts is crucial to ensure that software devel-
opment is manageable. Safety standards typically re-
quire traceability among software safety requirements, 
software development artifacts, and test cases. Mapped 
onto Model-Based Design, these standards require 

traces beginning at the software safety requirements 
level, covering architecture and design at the model 
level, the generated or handwritten code, and test arti-
facts on different test levels (see Figure 1).  

The standard calls for evidence that the safety require-
ments have been implemented completely and accu-
rately. Therefore, each development phase needs to 
show how the work products created can be traced to 
the safety requirements. This means each development 
phase creates numerous links between work products 
created in that particular phase and work products cre-
ated in earlier phases. This finally results in a network of 
dependencies via explicit or implicit traces that are cre-
ated throughout development. We define traces as im-
plicit if the link between work products is defined not di-
rectly, but via one or more additional work products. This 
could be, for example, the trace between test cases and 
model parts (see dashed lines in Figure 1). All the traces 
have to be maintained throughout the subsequent devel-
opment process, especially during or after modification of 
a work product. Because iteration cycles in Model-Based 
Design are rather short and dynamic, sophisticated trace 
management is of utmost importance to efficiently fulfill 
these IEC 61508-3 objectives on traceability.  

Models, code artifacts, test cases, and test results are 
relevant in order to demonstrate that safety requirements 
have been implemented completely and accurately. To 
achieve beneficial tracing in the context of Model-Based 
Design, IEC 61508 includes the following requirements: 

• TRA1: Textual safety requirements should be linked 
to model elements in a fine-grained way. 

• TRA2: Textual safety requirements should be linked 
to dedicated test cases and test results. 

• TRA3: Model elements should be connected with 
dedicated test cases and results either explicitly or 
implicitly via a certain requirement. 

• TRA4: Source code fragments should be linked to 
model elements and thus to the corresponding tests 
and requirements (Figure 1).  
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Figure 1. Traceability across artifacts within Model-Based Design.  

A requirements coverage analysis following these links 
could be carried out to get metrics for safety require-
ments covered by design/code artifacts and test cases 
as well as to flag uncovered requirements. Naturally, at 
the end of development, the coverage of safety require-
ments should reach 100% whatever artifact is in focus.  

In practice, the non-safety requirements can be traced 
using the same mechanism. 

The challenge of trace management originates not only 
from the demand of networked links, but also from the 
heterogeneous tools and processes used to create the 
various artifacts. 

One way to fulfill the traceability objectives of IEC 61508 
is to manually create extensive traceability matrices. But 
obviously from an efficiency point of view this approach 
is not reasonable. Since Model-Based Design follows a 
more dynamic approach than traditional code-based de-
velopment processes, tool support is highly desirable. A 
number of trace management tools for a set of tool com-
binations came into the market not long ago [Reqtify, 
RMI, ToolNet], but these tools offer only partial support 
for the day-to-day development work. As a result of its 
evaluation of these tools, Carmeq has established and 
maintained in-house solutions for tracing. 

The major aspects of the project-specific solution at 
Carmeq are described in the following sections, which 
are structured according to the requirements TRA1 to 
TRA4 of IEC 61508. 

TRA1: Textual safety requirements should be linked to 
model elements in a fine-grained way. 

Safety and noncritical requirements are described and 
managed outside of the model. At Carmeq, Telelogic 
DOORS [DOORS] is used to gather and maintain textual 

requirements. Usually, the linking into the model is more 
or less based on naming conventions. Two types of links 
can be differentiated here: 

• Links between requirements and higher-level sub-
systems in the model, where the subsystem could be 
seen as separate functions or architectural compo-
nents 

• Links between signals and model parameters and 
the interface description within DOORS 

One approach used at Carmeq to implement links be-
tween model and requirements involves the creation of a 
surrogate module within DOORS that resembles the 
model structure. Subsystems in the surrogate module 
are technically linked to the corresponding requirements 
in DOORS (Figure 2).  

Therefore, the subsystems in the surrogate module are 
annotated with requirements IDs. Having a naming con-
vention that reinforces the mapping benefits humans 
working. As an example, a Simulink subsystem would be 
implicitly linked to a single requirement or a group of re-
quirements in DOORS if both have the same name or 
some unique common substring. In this case a custom 
script can analyze both the requirements and the surro-
gate module and create links if matching names are pre-
sent.  
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Figure 2. Linking between models and requirements using a surrogate 
module. 

This approach has one major advantage over commer-
cially available tools: This kind of implementation is ap-
plicable to situations where the requirements module in 
DOORS is read-only for modeling and/or test engineers 
— that is, in situations where a direct link into the re-
quirements wouldn’t be feasible.  

The basic prerequisite to putting this approach into prac-
tice is a structural equivalence between the requirements 
and the model. In practice, such a structural equivalence 
down to the level of software units or modules can be 
ensured only if the teams writing the requirements and 
the teams creating the models belong to the same or-



 
ganizational unit. When the development process is di-
vided between an OEM and a supplier, structural uni-
formity is hard to ensure. However, if the requirements 
hierarchy and the model structure are consistent, as-
sessing and evaluating the links between requirements 
and model subsystems can be automated following the 
defined identifier mapping.  

The mapping of information with respect to the interface 
(e.g., signals, parameters, or configurable parameters) is 
often implemented by adding attributes to the specifica-
tion in DOORS. This means that all names used in the 
model on interface elements are added to the specifica-
tion. Specialized scripts could be used to either:  

• Ensure that the defined signals and parameters are 
still in use within the model 

• Find out about interfaces in the model that are not 
specified on the level of requirements 

TRA2: Textual safety requirements should be linked to 
dedicated test cases and test results. 

Testing activities ranging from model testing to proces-
sor-in-the-loop (PIL) testing are planned and executed 
using specialized tools (see section on dynamic testing). 
The test execution tool manages all the test cases and 
the test results emerging from the different test levels. 
Traces between test cases and relevant requirements, 
which are additionally required, have to be established 
via manual links. During test case design all requirement 
IDs that are expected to be covered by each test are 
gathered. 

The analysis of the achieved requirements coverage can 
be done using a specific management tool or project-
specific Excel templates.  

TRA3: Model elements should be connected with dedi-
cated test cases and results either explicitly or implicitly 
via a certain requirement. 

Obviously, this requirement is already fulfilled if TRA1 
and TRA2 are satisfied. But it can be achieved only if a 
trace management tool can visualize these dependen-
cies. 

TRA4: Source code fragments should be linked to model 
elements and thus to the corresponding tests and re-
quirements.  

Links between model parts and code fragments are for-
tunately implemented by the modeling tool and the code 
generator. During the code generation process, com-
ments are included in the code that enable the modeling 
engineer as well as the tool itself to switch from a dedi-
cated subsystem to the corresponding source code part 
and back. 

The connection to tests or requirements is naturally 
available if TRA1 to TRA3 are fulfilled. But, as for TRA3, 
it can be achieved only if a trace management tool can 
visualize these dependencies. 

In a nutshell, the demands for linking the safety require-
ments from the specification via the model to implemen-
tation and test can be satisfied by using a set of scripts 
and add-ons to the commercial software development 
tools. The implemented solutions focus on the explicit 
linkage between two domains — that is, links between 
requirements and models, between requirements and 
test cases, and between models and source code (see 
the solid lines in Figure 1). Although there is agreement 
on the necessity and the benefits of tracing the links be-
ginning at the requirements via models to source code 
and tests, a number of problems need to be addressed 
in order to achieve IEC 61508 compliant software devel-
opment. Most important, the support for the overarching 
trace management and the analysis capabilities for re-
quirements coverage analyses and forward/backward 
impact analyses must be enhanced.  

Furthermore, the demand for sophisticated trace man-
agement support results from the number of change cy-
cles in a project using Model-Based Design and from the 
dedicated needs to maintain the implicit links. Current 
solutions typically provide link mechanisms but usually 
no means to separately monitor traces with respect to 
safety requirements coverage.  

Therefore, future development projects have to establish 
and expand the available trace management tool support 
to satisfy the increasing traceability requirements result-
ing from IEC 61508-3. 

MODELING AND CODE GENERATION 
CONSIDERATIONS  

One of the essential advantages of Model-Based Design 
is the possibility of using code generators to translate the 
algorithms described in Simulink and Stateflow into 
source code (typically ANSI C) and thereby drastically 
shorten the implementation phase.  

To deploy generated code in safety-critical applications, 
means for robustness and reliability should already be 
included at the model level. Utilizing only carefully struc-
tured models using a subset of features/blocks for 
safety-critical systems is recommended.  

However, the application domain is characterized by a 
strong demand for efficient and lean source code that 
can be satisfied only by applying advanced optimization 
strategies provided by modern code generators. This 
constraint has to be considered as well. Safety-critical 
projects are facing the challenge of balancing these 
sometimes conflicting needs.  

Overseeing the implications of certain modeling or cod-
ing constructs as well as balancing the conflicting needs 



 
generally requires experienced project teams with a 
sound understanding of the relationship between model 
and code structures. 

Carmeq’s experiences developing driver assistance 
functions have shown the following aspects to be highly 
relevant when using Model-Based Design to create ro-
bust and reliable software: 

• MCG1: Modeling patterns and best practices that 
facilitate deployment in safety-related applications 
should be documented and used.   

• MCG2: Control structures and algorithmic parts (cal-
culations) should be separated and never mixed.  

• MCG3: Models should be enhanced with checking 
functionality covering signal ranges and dynamics, 
default values, and exception and error handling. 
Measures protecting mathematical operations 
against overflows should be used carefully. 

• MCG4: Data types and casting operations should be 
used strictly as defined by the utilized modeling and 
code generating tool. 

• MCG5: Comparison operations should be limited to 
values of the same type.  

• MCG6: Interface mechanisms of the generated code 
should use get and set functions.  

• MCG7: The various suggestions and recommenda-
tions should be compiled into a set of modeling 
guidelines for safety-related applications. If feasible, 
automatic guideline checking should be provided.  

An example that motivates the general need for docu-
menting modeling patterns for safety-related applications 
is the use of Multiport Switch blocks (Figure 3). Typically 
the code generator implements a Multiport Switch as a 
switch-case statement in C. Developers should be aware 
when using Real-Time Workshop Embedded Coder that 
the last input will be the “default” case of the generated 
code. Using this knowledge, the developer is able to de-
fine the default behavior of the generated code by con-
necting according model components to the last inport of 
the Multiport Switch block. 

 

Figure 3. Use of Multiport Switch blocks. 

Based on Carmeq’s experience, a clear separation of 
data and control flow aspects was beneficial to achieve 
designs of manageable complexity that are easy to com-
prehend and verify. Therefore, at Carmeq, control sig-
nals should not be part of calculations, neither in state 
machines nor within mathematical blocks. 

Carmeq considers range checking of input signals to be 
a “must have.” Therefore the data type should be chosen 
such that the signal range can be checked — that is, the 
physical range of the data type should be a superset of 
the specified signal range. Based on signal ranges the 
protection measures against overflows in math opera-
tions should be reviewed on a case-by-case basis to de-
termine if they are necessary. This way unreachable 
code could be avoided and the code size could be re-
duced.  

Designs with improper or missing typecasts are a com-
mon source of error because the code generator may 
generate code with compiler dependencies. Missing type 
casts from signed to unsigned data are especially prob-
lematic. A better design explicitly specifies the type casts 
and thus allows the code generator to generate proper 
type casts that are robust and compiler-independent, as 
shown in Figure 4. 

 

Figure 4. Use of casting operations. 

To avoid unintended side effects, comparison operations 
in models should be limited to expression of the same 
type. This guideline holds especially for basic data types 
and fixed-point data types. Floating-point expressions 
should not be tested for equality or inequality. The latter 
is the equivalent to MISRA-C:2004 Rule 13.3 [MISRA-C] 
at the model level. 

To ensure a deterministic data transfer, interface mecha-
nisms of the generated code should use get and set 
functions. These functions should be provided by the  
module the data originates from or by the operating sys-
tem. Real-Time Workshop Embedded Coder supports 
the concept of inlined S-functions. That is a powerful 
method for utilizing get and set functions in the gener-
ated code and still being able to model the interface be-
havior for simulation. 



 
Existing general-purpose modeling guidelines collections 
such as the MAAB guidelines [MAAB] or the Carmeq 
guidelines catalog [Car08] typically address safety as-
pects only to a limited extent. Therefore, the existing 
modeling guidelines should be enhanced by guidelines 
and best practices derived from safety considerations 
such as the ones listed above. Following the spirit of IEC 
61508-3 [IEC61508-3] such modeling guidelines for 
safety-related systems should specify good modeling 
practice, proscribe non-robust modeling features, and 
specify procedures for model documentation. 

To be effective, the guidelines for safety-related applica-
tions should be checked automatically where feasible. 
Static model analyzers such as the Automotive System 
Development (ASD) rule checker developed by Carmeq 
GmbH and Fraunhofer FOKUS [RLK+06] or the Model 
Advisor from The MathWorks [MA] allow partial automa-
tion of verifying a model against the modeling guidelines. 
A dedicated set of IEC 61508 related modeling standard 
checks for Model Advisor ships as part of Simulink Veri-
fication and Validation. These checks provide sugges-
tions for block settings that help to create standard-
compliant Simulink models and to identify modeling is-
sues that impede deployment in safety-related applica-
tions or limit traceability (Figure 5). 

This Absolute Value block is operating on an unsigned 
value which may result in unreachable code. 

This Absolute Value block is operating on a signed integer 
value but saturate on integer overflow is not set, which can 
lead to incorrect results in the generated code. 

This relational operator block is not outputting a boolean data type 
which can lead to unpredictable results in the generated code.

These root-level Inport blocks have undefined attributes. 

 

Figure 5. IEC 61508 modeling standard checks in Model Advisor.  

IEC 61508 highly recommends that language subsets be 
used for SIL 3 and higher applications. MISRA-C:2004 is 
a popular language subset for C code. Ensuring that the 
generated code complies with coding standards such as 
MISRA-C:2004 [MISRA-C] and facilitates a high degree 
of traceability imposes requirements not only on the 
model design but also on the code generator’s configura-
tion. These aspects could also be included in the model-
ing guidelines and should be checked by corresponding 
modeling standard checks. 

MISRA-C compliance at the code level is of particular 
importance when generated code and manually crafted 
code are used in combination.  

With TÜV SÜD’s recent IEC 61508 (fit for purpose) certi-
fication of Real-Time Workshop Embedded Coder [TÜV 
SÜD], the requirement to use certified translators (IEC 
61508-3 clause 7.4.4.3/Table A.3) can be satisfied as 
well. Using such a certified code generator is expected to 
ease the certification of generated code. 

DYNAMIC TESTING 

Dynamic testing is one of the most significant analytical 
quality assurance techniques for software, as it is the 
most elementary and certainly the most frequently used 
form of quality assurance [Lig92]. It is a practical method 
that adequately takes into consideration the actual de-
velopment and operating environment of a software sys-
tem (e.g., code generator, compiler, linker, operating 
system, target hardware). Furthermore, the dynamic 
properties of the system (e.g., run-time behavior, compu-
tational accuracy of the target system) can be checked. 
Dynamic testing is the most important and common 
method used to assure the quality of automotive controls, 
be they safety-related or noncritical applications. Applica-
tion-specific testing is required by IEC 61508-3 and other 
safety standards regardless of the tool chain and the de-
velopment paradigm used for in-vehicle software devel-
opment.  

Efficient testing requires adapting the testing process to 
the needs of the overall development process. Thereby, 
the software development paradigm applied during con-
trol software development substantially influences the 
testing process. 

Because the publication of IEC 61508-3 dates back to 
the 1990s, the standard does not directly provide the 
required guidance for testing within Model-Based De-
sign. Therefore, the testing-related requirements and 
recommendations of the standard need to be interpreted 
and mapped onto Model-Based Design [Con07, EC07, 
Con08, Con08a]. 

Testing in Model-Based Design extends the scope 
known from standard software testing theories. In Model-
Based Design, carrying out the largest possible share of 
the necessary testing at the model level and using ex-
ecutable models as a main source of information for test-
ing seem natural. Utilization of models as test objects 
permits a distinctly earlier start of test execution com-
pared with code-based development.  

Within the scope of Model-Based Design, executable 
models can be tested and the test information can be 
reused for subsequent testing of the generated code. 
Subjecting the software and its preliminary stages (mod-
els) to a well-defined combination of testing techniques is 
essential to detect errors and increase confidence in the 
correctness and functional safety of the software being 



 
developed. Such test strategies may include combina-
tions of functional and structural testing techniques. The 
systematic selection of test scenarios from the functional 
specification and the interface descriptions (require-
ments-based testing) forms the focal point of the dy-
namic testing workflow. In addition, an adequate struc-
tural coverage requirement can be defined on the model 
level and used to evaluate the completeness of the test 
scenarios. If sufficient model coverage has thus been 
achieved, the test scenarios can be reused for testing 
the code generated from the model and then embedded 
within the electronic control unit (ECU) in the framework 
of comparative equivalence tests (Figure 6). Again a 
structural coverage requirement, this time at the code 
level, can be defined and utilized to evaluate the com-
pleteness of the test scenarios. This is particularly nec-
essary if model and code structure differ significantly and 
the chosen model coverage metric does not sufficiently 
take this into account. 
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code generation
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requirements
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code 

Object 
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Figure 6. Dynamic testing workflow. 

MODEL TESTING 

The primary objectives of model-level testing are to dem-
onstrate that:  

• TES1: The model components (that is, the model 
subsystems considered to be a module) perform 
their intended functions and do not perform unin-
tended functions. 

• TES2: The model components interact correctly.  

A secondary objective is to ensure that: 

• TES3: The model level tests sufficiently cover the 
different structural parts of the model.  

This prerequisite is necessary to ensure the rigor of the 
subsequent equivalence testing. 

The first primary objective can be facilitated by model 
component testing intended to expose the behavior of 
the system and to permit a comparison with the specifi-
cation. Model test vectors should be derived systemati-
cally from the software requirements specification ac-
cording to established criteria (for in-vehicle applications, 

IEC 61508-3 Table A-5 [IEC61508-3]). See [CF05] for an 
overview of test design techniques for Simulink models. 

After the individual model components have been tested, 
the software system is assembled and tested according 
to the integration strategy that prescribes the number of 
integration levels and the sequence of incorporation of 
the individual components. During model integration test-
ing, a number of model components representing sub-
systems and finally the software system as a whole are 
tested. Software integration testing aims at revealing er-
rors resulting from incorrect component interface imple-
mentation, incorrect error handling, or improper control 
and sequencing of components. 

The following model testing capabilities of the Simulink 
product family can be used to support an IEC 61508-3 
conformant module and integration process:  

• Signal Builder blocks facilitate graphical test author-
ing by means of defining test stimuli as piece-wise 
defined functions. Externally defined stimuli can be 
imported.  

• Predefined Model Verification blocks can be used to 
check assertions during testing (block outputs should 
conform to the properties specified within the asser-
tions).  

• Simulink Verification and Validation lets end users 
link textual requirements to test scenarios and verifi-
cation blocks (see the section in this paper on trace-
ability). 

A model coverage analysis can be used to assess a 
given model test suite with regard to its ability to cover 
structural and data aspects of the model. Structural cov-
erage analyses are well established in imperative pro-
gramming languages and were made available for Simu-
link models in 2000. The Model Coverage tool within 
Simulink Verification and Validation allows conducting 
Decision, Condition, Modified Condition/Decision, 
Lookup Table, and Signal Range Coverage metrics 
based on model tests. 

IEC 61508-3 doesn’t call out specific coverage goals, but 
secondary sources such as [SS05] recommend that 
some test coverage metric should be visible for systems 
put at SIL 2 and above. At SIL 2 a risk-based approach 
might be chosen to direct the coverage analysis to com-
ponents containing complex algorithms and structures 
and other critical model parts.  

If the coverage achieved with the existing test suite is not 
sufficient, additional test vectors need to be created until 
the mandated level of model coverage has been 
achieved. 

Carmeq developed an in-house testing environment to 
integrate the testing process more seamlessly into the 
overall process of Model-Based Design. The in-house 



 
test environment, named ‘m-bedded test suite’, has fea-
tures for defining test scenarios and facilities for test exe-
cution (see next section). Some of these capabilities can 
also be accomplished using Simulink’s Signal Builder 
block, but this block was not available when the m-
bedded test suite was first developed. 

Engineers at Carmeq are considering using Simulink 
Design Verifier [SLDV] to aid the creation of additional 
model test vectors. The test generation feature analyzes 
the algorithms and logic of the model and generates a 
set of test vectors covering the various test objectives for 
the given coverage criterion. Predefined coverage crite-
ria include MC/DC coverage and can be augmented by 
user-defined objectives.  

If full coverage for the selected metric(s) cannot be 
achieved, the uncovered parts should be assessed and 
justification for uncovered parts should be provided. 

Complete model coverage suggests that the model test-
ing was thorough. Successful, thorough model testing 
then provides the evidence that the model components 
behave as specified and interact correctly.   

The tested model is used as a “golden reference” for im-
plementation through code generation, compilation, and 
linking. To verify the code generator/compiler/linker tool 
chain, the model used as input for code generation and 
the resulting object code are subjected to equivalence 
testing (also known as comparative testing or back-to-
back testing). 

EQUIVALENCE TESTING MODEL VS. CODE 

The core objective of equivalence testing is to:  

• TES4: Validate the model-to-code translation proc-
ess by demonstrating numerical equivalence be-
tween the model and the generated code.  

A valid model-to-code translation requires that the exe-
cution of the object code exhibit the same observable 
effects as the simulation of the model for any given set of 
test vectors. Since complete testing is impossible for 
complexity reasons, stimuli (test vectors) need to suffi-
ciently cover the different structural entities of the model.  

Equivalence testing can be carried out by stimulating 
both the model used for production code generation and 
the executable derived from the generated code with 
identical test vectors. The validity of the translation proc-
ess (that is, whether or not the semantics of the model 
have been preserved during code generation, compila-
tion, and linking) is determined by comparing the system 
reactions (result vectors) of the model and the generated 
code. In-depth discussions of equivalence testing proce-
dures can be found in [SC03, SC05, SCD+07]. 

The object code should be tested in an execution envi-
ronment that corresponds as far as possible with the tar-

get environment the code will be deployed to. In practice, 
the resulting object code is often being executed by 
means of software-in-the-loop simulation on the host 
(SIL verification), processor-in-the-loop simulation on the 
target processor or on a target-like processor (PIL verifi-
cation), or an instruction set simulator for the target 
processor (ISS verification). Certification agencies might 
prefer PIL verification. 

As mentioned before, Carmeq uses an in-house testing 
environment. It handles various kinds of test execution 
including SIL verification, PIL verification, and equiva-
lence testing [Sch07]. As it is everywhere, model testing 
is an inherent part of every project using Model-Based 
Design at Carmeq. However, current development proc-
esses for driver assistance applications at Carmeq are 
based mainly on SIL and PIL verification. Furthermore, 
an MC/DC coverage metric on code level is integrated 
seamlessly. 

Testing for numerical equivalence is unique in that the 
expected outputs for the test vectors do not have to be 
provided [Ald01]. This makes equivalence testing ideally 
suited to automation. 

Simulink Fixed Point offers unique capabilities to carry 
out a bit-true simulation of fixed-point models. This way a 
fixed-point model can be completely verified and vali-
dated prior to code generation and floating-point to fixed-
point conversion issues such don’t complicate the 
equivalence testing.  

FURTHER CONSIDERATIONS AND CHALLENGES 

Beyond the technical activities, IEC 61508 requires cer-
tain supporting activities, including proper test planning 
and documentation as well as revision control for the 
artifacts being tested. The test process must be inte-
grated into the overall software life cycle, and corrective 
actions on failure of tests and detected errors in the 
software need to be defined. 

Currently, assessors have difficulty solely relying on 
model coverage, even if the interplay between model and 
code coverage metrics has been examined analytically 
[Ald01] and statistically [BCS+03]. So on occasion they 
require additional consideration of code coverage. It is 
foreseeable that in the future, model coverage will be 
established as a common technique. Finally, it might be 
accepted as being equivalent to measuring code cover-
age. Publishing additional experience regarding model 
coverage could help to speed up this process. 

SUMMARY AND CONCLUSION 

Currently, IEC 61508-3 is the relevant safety standard 
with respect to software development for embedded in-
vehicle applications. It defines requirements and con-
straints for the software development and quality assur-
ance processes. These requirements apply to both 
Model-Based Design and traditional software develop-



 
ment. However, implementing these requirements within 
Model-Based Design requires special consideration and 
creates specific challenges.  

In this paper the authors described workflows and prac-
tices for Model-Based Design activities used by Carmeq 
to fulfill the objectives of IEC 61508-3. These workflows 
and best practices show the opportunities associated 
with utilizing the Simulink product family for safety-
related embedded software. They are also used to dis-
cuss achievements and limitations with respect to tool 
support currently available and the evolving role of differ-
ent development artifacts.  

The authors anticipate that ongoing and upcoming tool 
developments will help with fulfilling additional IEC 
61508-3 requirements and streamlining development 
and certification activities. Tool suppliers are expected to 
advance their tools such that custom tools become less 
important and the advantages of Model-Based Design 
can be fully exploited. 
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