
W H I T E  PA P E R

Model-Based Design Using  
Simulink, HDL Coder, and DSP 
Builder for Intel FPGAs 
By Kiran Kintali, Yongfeng Gu, and Eric Cigan



Model-Based Design Using Simulink, HDL Coder, and DSP Builder for Intel FPGAs

W H I T E  PA P E R   |   2 

Summary

This document describes how HDL Coder™ from MathWorks can be used with DSP Builder for Intel® 
FPGAs in an integrated FPGA workflow. We use an example to show how designers can integrate 
models built with DSP Builder Advanced Blockset into a Simulink® model, and how HDL Coder can 
generate HDL code for the complete design. This capability allows designers to reuse existing DSP 
Builder models when using HDL Coder to create new designs, or to incorporate target-optimized 
Intel FPGA IP blocks created for use with HDL Coder within Simulink models. 

Introduction

MATLAB® and Simulink for Model-Based Design provide signal, image, and video processing engi-
neers with a development platform that spans design, modeling, simulation, code generation, and 
implementation. Engineers who use Model-Based Design to target FPGAs or ASICs can design and 
simulate systems with MATLAB, Simulink, and Stateflow® and then generate bit-true, cycle-accurate, 
synthesizable Verilog® and VHDL® code using HDL Coder. 

Alternatively, engineers who specifically target Intel FPGAs can use DSP Builder for Intel FPGAs, a 
plug-in to Simulink, to generate synthesizable hardware description language (HDL) code mapped to 
pre-optimized Intel FPGA implementations. DSP Builder includes the Advanced Blockset, a high-lev-
el synthesis technology that optimizes the high-level, untimed netlists into low-level, pipelined hard-
ware for the target Intel FPGA device and desired clock rate. 

Some projects benefit from implementing a workflow that combines the native Simulink workflow, 
device-independent code, and code readability offered by HDL Coder, with Intel-specific features and 
optimizations offered by DSP Builder Advanced Blockset.1 

This paper describes a new workflow for designs that are created with blocks from both Simulink and 
DSP Builder Advanced Blockset.2 Prior experience with MATLAB, Simulink, and DSP Builder will 
help you make the most of the examples in this paper.

Required Software

The models described in this paper are from the example included with HDL Coder, Using Altera 
DSP Builder Advanced Blockset with HDL Coder. Simulation and code generation from the model 
have been tested with the following versions of the software:

• MATLAB (R2013b or later)3

• Simulink

• HDL Coder (requires MATLAB Coder™ and Fixed-Point Designer™)

• Intel FPGA DSP Builder for Intel FPGAs (version 13.0sp1 or later)

1 For a summary of the features of HDL Coder and Intel DSP Builder Advanced Blockset, see appendix. 
2 This integrated workflow is limited to models built with the DSP Builder Advanced Blockset. Models built using the Standard Blockset 

of  DSP Builder for Intel FPGAs are not supported in this workflow. All subsequent references to DSP Builder (DSPB) subsystems 
describe models built from the DSP Builder Advanced Blockset. 

3 For the latest information, consult HDL Coder documentation, Create an Altera DSP Builder Subsystem. 

http://www.mathworks.com/help/hdlcoder/ug/create-an-altera-dsp-builder-subsystem.html


Model-Based Design Using Simulink, HDL Coder, and DSP Builder for Intel FPGAs

W H I T E  PA P E R   |   3 

To simulate, synthesize, and implement HDL code generated from the model, the following software is 
also required:

• Intel Quartus® Prime (version 13.0sp1 or later) 

Setting Up the MATLAB Environment for HDL Code Generation and DSP 
Builder Advanced Blockset Integration

Before you can begin working on your model, you need to ensure that the MATLAB environment is 
aware of DSP Builder and that DSP Builder is configured to work with MATLAB.

To start DSP Builder, follow one of these steps (see DSP Builder for Intel FPGAs Handbook – Volume 
1: Introduction to DSP Builder for more details):

• From Microsoft® Windows®, click Start, point to All Programs, click Intel FPGA<version>, click 
DSP Builder, and click Start in MATLAB<version>.  

 – If you have multiple versions of MATLAB installed, you can start DSP Builder in your 
desired version from this menu.

• On Linux OS, use the following command, which automatically finds MATLAB: <path to the 
Quartus II software>/dsp _ builder/dsp _ builder.sh>

 – You can use the following options after the dsp _ builder.sh command:

 ∙ –m <path to MATLAB> to specify another MATLAB path

 ∙ –glnx86 to run 32-bit DSP Builder

Your MATLAB environment also needs to be made aware of the Quartus II installation. This is 
accomplished through the hdlsetuptoolpath command in MATLAB. The command below shows 
the typical path for a Windows PC Quartus II installation.

>> hdlsetuptoolpath(‘ToolName’, ’Intel FPGA Quartus II’, ’ToolPath’,  

’C:\intelfpga\13.0sp1\quartus\bin64\quartus.exe’);

Note that hdlsetuptoolpath changes the system path and system environment variables for the 
current MATLAB session only. To execute the hdlsetuptoolpath command automatically when 
MATLAB starts, add it to your startup.m script. 

Example: Design with Blocks from Simulink and DSP Builder Advanced 
Blockset

The example model (hdlcoder _ sldspba.slx) performs FIR filtering. The top level of the design 
contains two subsystems, one implemented with blocks from the DSP Builder Advanced Blockset, 
and the other with native Simulink blocks (Figure 1). Because they are designed for synthesis on Intel 
FPGAs, Intel FPGA blocks will yield an optimized implementation of this FIR filter on an Intel 
FPGA. The Simulink subsystem contains a Stateflow block and a MATLAB function block, which 
provide flexibility in modeling complex control algorithms. Users can also explore various optimiza-
tions on the Simulink subsystem through HDL Coder.



Model-Based Design Using Simulink, HDL Coder, and DSP Builder for Intel FPGAs

W H I T E  PA P E R   |   4 

Figure 1. Simulink model of an FIR system (hdlcoder_sldspba.slx).



Model-Based Design Using Simulink, HDL Coder, and DSP Builder for Intel FPGAs

W H I T E  PA P E R   |   5 

Preparing a Model for HDL Code Generation

In a typical development workflow, engineers model and simulate a design in Simulink, completing 
multiple iterations to identify and eliminate design problems in preparation for implementation. 
Before using HDL Coder and DSP Builder Advanced Blockset to generate code, you must prepare the 
model by:

• Creating a DSP Builder (DSPB) subsystem

• Setting code generation options for DSPB subsystems

• Setting code generation options for HDL Coder

Creating a DSPB Subsystem

To create a DSPB subsystem:

1. Put all the DSP Builder blocks in one subsystem. (Note: In general, HDL Coder supports the use of 
multiple DSPB subsystems provided that all DSP Builder blocks must be contained in DSPB sub-
systems; this example, however, demonstrates use of a single DSPB subsystem.)

2. Ensure the subsystem’s Architecture parameter is set to Module (the default value). See the Code 
Generation Options for HDL Coder section (page 8) for more on this setting. 

3. Place a Device block at the top level of the subsystem. You can have subsystem hierarchy in a DSPB 
subsystem, but there must be a Device block at the top level of the hierarchy.

4. Place a Control block and a Signals block at the top level of the model. 

You can use the following MATLAB command to open the DSPB subsystem in the example model 
(Figure 2).

>> open _ system(‘hdlcoder _ sldspba/SLandDSPBA/DSPBA Subsystem’);



Model-Based Design Using Simulink, HDL Coder, and DSP Builder for Intel FPGAs

W H I T E  PA P E R   |   6 

Figure 2. The image processing system’s DSPB subsystem.

Setting Code Generation Options for DSP Builder

HDL Coder supports DSP Builder code generation with the following settings only:

• Device block (Figure 3):

 – The same Device must be chosen by all Device blocks and by HDL Coder if applicable.

• Control block (Figure 4):

 – Generate Hardware must be checked. 

 – Create Automatic Testbenches must be unchecked. 

• Signals block (Figure 5):

 – Reset Active must be same the setting in HDL Coder.

You do not need to configure these settings yourself. HDL Coder will modify and restore these settings 
on the DSP Builder blocks during code generation.



Model-Based Design Using Simulink, HDL Coder, and DSP Builder for Intel FPGAs

W H I T E  PA P E R   |   7 

Figure 3. Options for the DSPB Device block.

Figure 4. Options for the DSPB Control block.

 

Figure 5. Options for the DSPB Signals block.



Model-Based Design Using Simulink, HDL Coder, and DSP Builder for Intel FPGAs

W H I T E  PA P E R   |   8 

Setting Code Generation Options for HDL Coder

In addition to the settings described above for HDL code generation, HDL Coder requires the 
Architecture parameter of DSPB subsystems to be set to Module (Figure 6). If code generation is 
performed with HDL Workflow Advisor, the device settings for Workflow Advisor and DSPB Device 
blocks must be identical, as shown in Figures 3 and 7.

Figure 6. DSPB subsystem implementation parameters in HDL Coder.

Figure 7. Tool and device options in HDL Workflow Advisor.

Generating HDL

You can generate HDL code from the configured model with the command line interface or with the 
GUI, as with any other model. For this example model, the command to generate code is:

>> makehdl(‘hdlcoder _ sldspba/SLandDSPBA’)



Model-Based Design Using Simulink, HDL Coder, and DSP Builder for Intel FPGAs

W H I T E  PA P E R   |   9 

Refer to the HDL Code Generation from a Simulink Model tutorial provided with HDL Coder for 
details on how to generate code using the GUI.

Generating HDL Test Bench and Simulation Scripts

For this example model, the command to generate test bench and simulation scripts is:

>> makehdltb(‘hdlcoder _ slsysgen/SLandSysGen’);

Handling Simulation Mismatch When Valid Signal Not Asserted

The DSPB subsystem simulation may not match its generated code’s behavior when the valid signal is 
not asserted under certain circumstances, such as when the design employs the folding optimization 
and/or floating-point support. You may observe such mismatches by turning on the Folding option 
in both hdlcoder _ sldspba/SLandDSPBA/DSPBA Subsystem/ChannelIn and hdlcoder _

sldspba/SLandDSPBA/DSPBA Subsystem/ChannelOut. The mismatch affects the downstream 
Simulink design and causes a test bench simulation failure.

To see the mismatch, you can turn on the folding setting for the ChannelIn and ChannelOut blocks:

>> set _ param(‘hdlcoder _ sldspba/SLandDSPBA/DSPBA Subsystem/ChannelIn’, 

‘FoldingEnabled’, 1);

>> set _ param(‘hdlcoder _ sldspba/SLandDSPBA/DSPBA Subsystem/ChannelOut’, 

‘FoldingEnabled’, 1);

Then, generate the HDL code and test bench again:

>> makehdl(‘hdlcoder _ sldspba/SLandDSPBA’);

>> makehdltb(‘hdlcoder _ sldspba/SLandDSPBA’);

After simulating the generated code and test bench, you can see that the outputs from HDL Coder 
match the reference data only when the valid signal is asserted as shown in Figure 8.

 Figure 8. Simulation mismatch when valid signal not asserted.



Model-Based Design Using Simulink, HDL Coder, and DSP Builder for Intel FPGAs

W H I T E  PA P E R   |   1 0 

As the message from the test bench indicates, the mismatch is expected.

To avoid this simulation mismatch, insert an enabled subsystem at the DSPB subsystem output signals, 
before they reach the Simulink part of your design or the output ports of the overall design. Figure 9 
shows how to connect signals to the enabled subsystem.

>> open _ system(‘hdlcoder _ sldspba/SLandDSPBA2’);

Figure 9. Use of enabled subsystem with DSPB subsystem to avoid mismatch when valid not asserted.

Further Reading

For more HDL Coder videos and examples, visit mathworks.com/products/hdl-coder/examples.html.

 

http://www.mathworks.com/products/hdl-coder/examples.html


Model-Based Design Using Simulink, HDL Coder, and DSP Builder for Intel FPGAs

W H I T E  PA P E R   |   1 1 

© 2014 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.  
Other product or brand names may be trademarks or registered trademarks of their respective holders.

92161v00 02/14

Appendix: Feature Comparison of HDL Coder and DSP Builder for Intel FPGAs 
Advanced Blockset

The table below summarizes the complementary features and benefits of HDL Coder and DSP Builder 
Advanced Blockset. Used independently, each approach provides an effective FPGA design flow. 
 

 
Feature

 
HDL Coder

DSP Builder 
Advanced 
Blockset

 
Benefit

Software and hardware code 
generation

X Partition algorithms 
between processors and 
hardware

Access to Simulink block library X Rapidly assemble system 
models using existing 
blocks

Support for native Simulink blocks X Easily migrate system 
model to hardware

Floating- to fixed-point conversion X Shorten design cycles
Design exploration X X Rapidly explore hardware 

solution space

Automatic test bench generation X X Verify hardware against 
system models

Transaction-Level Model (TLM) 
component generation

X Use system-level modeling 
methodologies

Hardware cosimulation X X Verify hardware 
implementations on Intel 
FPGA development boards

MATLAB to HDL code generation 
and hardware cosimulation

X Follow a hardware design 
workflow without using 
Simulink

Readable, traceable HDL code X Streamline standards 
compliance and reporting

Access Intel FPGA IP in Simulink X 
(when used 
with DSP 
Builder)

X Generate implementations 
optimized for Intel FPGA 
targets

Analog data acquisition X Verify algorithms with 
real-world analog data

Hardware deployment X X Deploy designs in hardware 
without FPGA design 
experience

http://www.mathworks.com/trademarks

