
2007-01-0777

Best Practices for Establishing a Model-Based Design Culture

Paul F. Smith, Sameer M. Prabhu, Jonathan H. Friedman
The MathWorks

Copyright © 2007 The MathWorks, Inc.

ABSTRACT

The transition to Model-Based Design must be managed
carefully, both to demonstrate short-term benefits and to
establish a culture that enables the full realization of the
theoretical benefits of this approach. In this paper we
introduce the concepts of Model-Based Design, highlight
some of its benefits, and then discuss in detail the 10
best practices for adopting a Model-Based Design
culture across an organization. These best practices
have been gleaned from successful and not-so-
successful transformations to Model-Based Design at
companies from a variety of different industries.

INTRODUCTION

The adoption of embedded systems continues to
transform the automotive industry. This transformation
arises from opportunities for improving performance,
safety, and maintenance through the use of
sophisticated, on-board, software-based electronic
controls. In addition to this transformation of the
passenger vehicle industry, a second wave of
embedded systems adoption is occurring in the
commercial vehicle industry. Here embedded systems
are being used to control hydraulic systems that
previously relied on mechanical controls to achieve
improvements in machine productivity as well as safety
and maintenance. In both industries, the increase in
system complexity poses a significant challenge to the
capabilities of traditional systems development
processes to meet program timing, cost, and quality
metrics. To address these challenges, engineers at
major vehicle manufacturers are skipping over a
generation of system design processes based on hand
coding and using graphical models to design, analyze
and implement the software that determines machine
performance and behavior.

Using models ensures that a final product meets system
requirements. Models enable engineering teams with
different specializations to work together efficiently and
to communicate between people working on various
stages of the design process; to identify and fix errors
early on in the development process; and to
automatically generate robust, efficient, and high-quality
software. From the unique perspective of the software

tool vendor, a distillation of underlying principles leading
to successful application of Model-Based Design is
possible. These range from specific practices related to
automatic code generation to organizational issues that
must be addressed. We examine each in some detail.
The ‘right’ combination of these suggestions, tailored to
the surrounding corporate culture in which Model-Based
Design is to be immersed, must be carefully selected by
the engineering managers leading the transformation.

WHAT IS MODEL-BASED DESIGN?

In Model-Based Design, the development process
centers around a system model — from requirements
capture and design to implementation and test.

Figure 1: Model-Based Design.

This system model is the heart of an executable
specification which is used and elaborated throughout
the design flow. The executable specification can also
include inputs and expected outputs or acceptance
criteria, and the application environment, as well as links
or references to the requirements.[1] The goal of the
executable specification is to unambiguously
communicate the design goals, as well as to allow
feasibility and compatibility analysis of the requirements
via simulations.

When software and hardware implementation
requirements are included, such as fixed-point and
timing behavior, code can automatically be generated for

embedded deployment and test benches created for
system verification, saving time and avoiding the
introduction of hand-coding errors.

With Model-Based Design, engineers improve efficiency
by:

• Using a common design environment across among
project teams

• Linking designs directly to requirements
• Integrating testing with design to continuously

identify and correct errors
• Refining algorithms through multidomain simulation
• Automatically generating embedded software code

and synthesizable HDL code
• Developing and reusing test suites
• Automatically generating documentation
• Reusing designs to deploy systems across multiple

processors and hardware targets

ADOPTION OF MODEL-BASED DESIGN

Why do companies adopt Model-Based Design?
Sometimes there is a top-down management mandate
driven by strategic plans to deploy a common set of
tools and processes. Other times there is a grass roots
initiative by engineers who used modeling at the
university and are looking for tools to address their
needs in their current jobs. At other times, Model-Based
Design is an enabling technology to a broader initiative
such as Six Sigma or Systems Engineering. Whatever
the impetus to make the initial leap into Model-Based
Design, the effort is sustained because of the payback
that companies see. The payback comes in a variety of
forms:

• Efficiency gains, such as a reduced number of hours
 project [required to complete a given

ket [
1],[2]

• Reduced time to mar 3]
• Improved quality [4]
 Reduced dependence on physical prototypes [• 5]

Additionally, engineers often just have more fun doing
their job when they have the right set of tools.

MAKING THE TRANSITION TO MODEL-BASED
DESIGN – 10 BEST PRACTICES

The transition – What is important to consider?

Wisdom is the sum of learning through the ages.

Smart organizations learn from their own mistakes. Wise
ones learn from others’ mistakes. Working with major
corporations and governmental agencies over the years,
we have seen many successes and a few mistakes as
these organizations transitioned to Model-Based Design.
We have gathered the following best practices together
so our readers can learn from others and avoid the

common pitfalls encountered when evolving to a Model-
Based Design culture.

When considering the transition to Model-Based Design
as a way of developing embedded computing systems, it

First, an organization must establish a culture that

Tools must be readily accessible and widely available to

,
and the people working within it. When adopting model-

designer and implementer get blurred with
Model-Based Design. An effective organizational

p weaknesses in the design
process. Top management needs to understand the

ainst the plan.

re numerous sub-elements within
the modern embedded systems development process

sub

is important to consider culture, tools, processes,
organization, and strategy.

values the development and use of models and
simulation as a core engineering activity.

enable the productivity enhancements possible with
model-based design.

Tools are used within the boundaries of defined
processes. Each corporate or government agency has
varying levels of formality in the design process driven
by culture, regulation, best practices, the latest trends

based design, as with any technology, effective and
consistent surrounding processes must be established.

Traditional organizational models may need to be
adapted or abandoned in favor of ones that support
Model-Based Design workflows. Deliveries of work
products between internal groups and the boundaries
between

structure with visionary leadership is essential to
success.

The transition to Model-Based Design must be driven by
a strategy with clearly defined goals and supporting
metrics. There should be a logical sequence to the
evolution, which will differ from organization to
organization. The strategy should build upon current
strengths and shore u

strategy and hold the engineering staff accountable to
deliver ag

Best Practice #1: Identify the problem you are trying
to solve

Before any process improvement can take place, it is
necessary to have a deep understanding of where the
relative strengths and weaknesses are in the current
organization or processes. There must be metrics in
place to support this understanding. For organizations
that do not have a metrics program in place, Best
Practice #0 should be to establish one. A doctor would
not prescribe medications to fix an illness until the nature
of the illness and the patient’s medical history are well
understood. The same is true when adopting model-
based design. There a

that could be operating inefficiently. Examples of such
-elements include:

• Schedule Predictability – Can the organization
predict and deliver to a schedule?

Software Quality – Are there excessive defects
produced by the curren

•

t development process? At
what stage of development are they introduced? Are

 Time to market – Are products being produced in

 g and Configuration Management –

and
elopment

•

ganization?

current weaknesses in their

n on investment of the tools and
something to fix that
at their investment is

ld be used to define and develop control

actice #1 above. The
goal is to achieve a maximized return on investment.

ls can be
successful, but tend to find the burden of adopting the

s of their investment of time and capital.

, it is only
natural to extend the “Rule of Two” mentioned earlier to

very quickly and efficiently from the
model. This significantly shortens the software

there sections of the code or algorithm that tend to
produce more defects?

•
time to meet the rapidly shifting demands of today’s
consumers?

• Productivity – Are the LOC, person, and time period

(or other measure) up to industry standards?

Defect Trackin•
What level of sophistication exists to manage
track the work output of the dev
organization?

Reuse – Are the work products reusable?

• Product documentation – Is there a system in place

to publish documentation on the work products of
the development or

• Rapid Prototyping – Do processes exist to prototype

new functionality?

• Validation and Verification – Are bugs being caught

and removed before product delivery? At what cost?

Each organization adopting model-based design needs
to decide where the
processes are, what the cost to the organization is as a
result of these weaknesses, and consequently what
problem to tackle first.

When deciding what problem to solve first, it is also
important to understand how long it will take to solve that
problem. Executive management may have a myopic
view of the retur
technologies they authorize. Pick
will demonstrate to the sponsors th
producing results.

Best Practice #2: “Rule of Two”

To extract the minimally acceptable return on an
investment made in tools, training, and organizational
change needed to justify the move to Model-Based
Design, the models produced must be used for at least
two different purposes. For example, models could be
used to validate requirements through simulation and to
automatically generate documentation. Alternatively,
models cou
algorithms that are used during rapid prototyping and
also to automatically generate code for production
controllers.

The choices made for the two process elements should
be chosen carefully, using Best Pr

Model reuse across different design stages is important
to achieving this maximum return.

Organizations that pursue a single use of mode

new technology overwhelming. They may fail to reap the
benefit

Best Practice #3: Use models to generate production
code

Organizations increasingly use software to achieve
hardware commonality – that is, to keep the basic
hardware the same, but make it behave differently by
changing the embedded system software that controls
the hardware. This allows manufacturers to achieve
economies of scale on the hardware side, but at the
same time allows the product to be customized for
multiple customer needs by simply changing the
embedded software, in effect satisfying two seemingly
contradictory objectives of product customization versus
mass production. It is no surprise then that embedded
system software is fast replacing mechanical hardware
as the key determinant of product performance
characteristics. Also, it is the embedded system software
that controls the major systems on a vehicle, and thus in
effect it is the software that makes the vehicle “move”.
Given the importance of embedded software

cover the fact that one use of a model should be to
automatically generate embedded software.

Using models ensures that a design meets the
associated system requirements and also allows errors
to be found early in the design process when it costs
less to fix them. The latest advances in code generation
technology allow production-ready embedded software
to be generated automatically from a model.[11] When
the embedded software is automatically generated from
a model it allows the reuse of the entire testing
infrastructure built to test the model. It thereby allows the
verification of the generated software and also errors, if
they can be found and fixed early on. Also, if
requirements change or design changes have to be
made, they are made to the model. The software can be
then regenerated

turnaround time for responding to requirements and/or
design changes.

Generating embedded software automatically from
models does require a cultural shift in an organization.
Historically, control designers built models for their
designs, and software engineers developed embedded
software by hand based on these model specifications.
With automatically generated embedded software, the
software engineer's focus shifts from spending time
rewriting the algorithmic code every time the design
and/or requirement changes to spending more time on

integrating algorithmic code with the rest of the
embedded system, as well as on specifying and setting
up the infrastructure for the same. This is a significant
shift, and it requires that the metrics used to measure
software engineers’ productivity also change
accordingly. In addition, models facilitate a closer
working relationship between controls and software
engineers, and break down the traditional barriers
between these job functions. The organizational

realize the full benefits of Model-Based Design.

significantly to ensure that the program exceeds quality

 is then reused in a different program, the
algorithmic errors or inconsistent requirements then

by
Model-Based Design. In effect the organization has to

sign language for embedded software.

of the
core competencies of the organization. Armed with this

n creating tools and utilities that allow
easier transition to Model-Based Design,

to identify appropriate areas for Model-Based
Design causes minimal disruption to the development

n – things
that are constantly changing or causing issues. Finally,

system into the background as time permits.

leadership has to encourage and facilitate this in order to

Best Practice #4: Models are the sole source of truth

In addition to the benefits accrued from following the
“Rule of Two” and using models for multiple purposes in
the development process, a significant benefit of Model-
Based Design is that models can be reused over
multiple programs. Models then become the
organization’s intellectual property (IP) and reusing them
over multiple programs allows the IP to be leveraged

and schedule metrics. However, these benefits can only
be realized if the model does indeed contain the true IP.

A logical extension of this and of Best Practice #3 is that
the model should be the sole source of truth regarding
the embedded system. The embedded software
automatically generated from the model is what makes
the vehicle “move”. If an algorithmic error is found or if
some last minute requirement changes are made when
going through final verification and testing on pre-
production vehicles, it is indeed very tempting to “fix” the
embedded software itself to avoid having to go through
the automatic embedded software generation and
integration process all over again. However, if the
software engineer acts on this temptation, it quickly
leads to the model and software getting out of sync, and
the model does not contain the true IP. Thus, if the
model

have to be dealt with all over again on that program as
well.

This raises organizational implications similar to those
discussed with Best Practice #3. Controls and software
engineers have to work together to ensure that any last
minute changes are indeed propagated back to the
model. The organizational leadership should support
and encourage this, and emphasize the need and
benefits for doing so. If not, it is indeed very easy for
controls and software engineers to diverge and thereby
prevent the realization of all the benefits afforded

have the discipline and rigor to use and enforce models
as the sole de

Best Practices #5: Use the transition as a learning
opportunity

Transitioning from a conventional development process
to Model-Based Design can sometimes seem daunting.

However, it is essential that organizations follow Best
Practice #1 and use this transition to learn about
themselves and the issues critical to their long-term
success. This introspection leads to a clear fundamental
understanding of the current process, its strengths and
weaknesses, and also a deeper understanding

in-depth information, an organization can better tackle
the task of transitioning to Model-Based Design.

A common temptation in such a transition is to
“outsource” the transition to Model-Based Design to a
third party. While outsourcing in itself is not bad, it needs
to be judicious and targeted at areas that are not core
competencies of the organization. If the conversion of
existing IP to a model-based environment is outsourced,
the organization loses the opportunity to re-examine this
IP, to question which parts of the IP should really be
transferred over, or to fix any errors and bugs that might
exist in this IP, etc. Thus, a significant opportunity for
improving product quality can easily be squandered due
to ineffective outsourcing. The organization should
certainly get help from third parties, but that help should
be focused o

recommendations for better processes for Model-Based
Design, etc.

Another common temptation is to “flip the switch” and
transition completely over to Model-Based Design in
order to realize its benefits. This is fraught with
significant pitfalls. First, there are several elements of
the current development process or product that are
likely to be efficient, or well established, and do not need
to be changed during the first pass. Throwing these out
will cause needless rework in adapting to Model-Based
Design. A smarter way would be to judiciously select the
elements of the process and product that need to
change and to leave the rest as is. An example would be
to identify problem areas in the current process or
product and focus Model-Based Design on these areas
only in the first iteration. Second, it is important to
recognize that there are several elements of the current
development process or product that would probably
never be changed over to Model-Based Design. As an
example, low-level device drivers, or control features
that are to be phased out in upcoming generations,
should not be transitioned to Model-Based Design.
Taking a deeper look at the current development
process

process and at the same time yields the maximal
benefit.

When deciding which parts of the product IP to model,
completely new control features should be tackled first.
Next, move on to problem areas in the desig

slowly migrate more stable portions of the control

Best Practice #6: Focus on design instead of coding

Sometimes, when Model-Based Design is introduced,
software engineers are immediately concerned that their
jobs are in jeopardy. However, this fear evaporates as
the design team sees that software engineering is still
occurring as part of Model-Based Design. However, the
traditional role of the software engineer shifts from the
combined activity of coding for implementation to one of
architecting the software at the beginning of the process
and elaborating the executable specification to enable

r, such as when an
algorithm model is created with floating-point values and

ccessful, Model-
Based Design needs to be part of the mainline product

when Model-Based Design is introduced, simulation

stablished. These include
generic product training and customized process-

 a project. When all the
lines of code can be generated “at the push of a button,”

Best Practice #8: Designate a champion who has
influence and budgetary control

code generation closer to the implementation phase.

For example, software engineers must develop a flexible
architecture that allows legacy code to be integrated with
new features that are developed using Model-Based
Design. Additionally, software engineers must add
elaborations to the model to ensure that the generated
code will work on the target processo

the targeted processor is fixed point.

Best Practice #7: Integrate the development process

Model-Based Design thrives where there is a supporting
infrastructure that reinforces the best practices outlined
in this paper. In other words, to be su

development process, not an overlay.

Often existing processes and metrics need to be
modified to incorporate Model-Based Design. For
example, style guides need to be developed and
enforced through reviews at appropriate project
milestones. Configuration management of the Model-
Based Design artifacts needs to be addressed. In a
code-centric process, the code is usually the primary or
sole artifact under control. In Model-Based Design,
controlled artifacts could include test vectors, expected
outputs, model components, the version of the modeling
environment used, etc. [6] Similarly, requirements
management and verification processes and tools need
to be integrated with Model-Based Design tools.
Traditionally, software requirements are not verified until
there is a prototype implementation available. However,

verification can be added prior to hardware verification.

Detailed and ongoing training and competency
development plans must be e

specific guidelines and rules.

Lastly, and perhaps most importantly, the metrics used
to evaluate a project’s status must be updated to
account for the shift to Model-Based Design.[8] For
example, under a traditional development process, one
might measure the number of lines of code generated
per day to assess the “health” of

this metric loses its meaning.[8]

Organizations that are most successful in implementing
the transition to Model-Based Design have selected a
strong, experienced and highly respected champion.
Sometimes this person needs to be a consensus builder,
and sometimes a benevolent dictator.

This person typically has seniority and a proven track
record of orchestrating organizational change. The
migration will be feared by some and welcomed by
others. The champion needs to be able to channel the
energies of those welcoming the new way of doing
business and to calm the fears of (or possibly remove)
those that are not.

The champion should be well respected by peers,
subordinates, and superiors. If there is overt or covert
undermining of the transition due to the political
landscape surrounding the champion, the entire
transition may be placed at risk for reasons having
nothing to do with the technology or process.

This person should have either direct budgetary controls
or the support of executive sponsors who do. The
investment in people, capital, and training is a function of
the magnitude of the overall Model-Based Design
deployment and expected return on investment (ROI).
These investments can be substantial for a large
organization, and budgetary discretion will be an
important attribute of the champion.

Best Practices #9: Have a long-term vision

The migration to Model-Based Design takes time. For a
moderate-sized embedded systems design and
development organization in the transportation,
construction equipment or aerospace-defense industry
who is starting from scratch, the time scale for change is
measured in years, not months. ROI can first be
achieved after the first models are built, simulated, and
defects removed from the design before going to code or
hardware. The full benefits can only be achieved over
time.

It is quite common for organizations trying to catch up to
this trend to “hope” that they can transform their
development organization to one based on the concepts
and technology of Model-Based Design in three to six
months. This is quite unrealistic. Perhaps a small outfit
with a limited product line and 5-20 developers can
make the switch in this short time frame. Teams
performing primarily research can also make the leap
more quickly, because they tend to be less encumbered
with legacy processes (but the corresponding ROI tends
to be lower.) Larger organizations tend to be heavily
encumbered with legacy process elements, and the time
to “glue” any commercial tool chain into their processes
takes a considerable amount of time. Some factors to
consider include how to marry Model-Based Design with
the legacy systems and process for:

• Defect tracking
• Configuration management

• Documentation and publishing

Time

Do it yourself

Leverage the supplier’s
experience

• Tuning, trimming, or calibration
• Project management
• Home brewed embedded operating systems or

custom hardware targets
• Metrics programs (how you measure productivity will

change [8])
(Note: This is not meant to be an exhaustive list.)

 Be patient and think for the long term. Have a master
plan and keep grinding away at it. Celebrate small
successes along the way and change the plan as
needed as conditions change. Applying other best
practices listed above, carefully choose the sequence in
which Model-Based Design concepts will be applied to
demonstrate value up the chain of command (and hence
to those making the resource commitments necessary to
sustain the transition).

There is an immediate benefit most engineering
organizations report as they begin the transition: their
people have more fun doing their job. Most people –
especially engineers – like working with powerful tools.
This leads to higher retention rates and increased job
satisfaction.

Best Practice #10: Partner with tools suppliers

As mentioned at the beginning of this paper, smart
organizations learn from their own mistakes, and wise
organizations learn from the mistakes of others. As
organizations go through the process of transitioning to
Model-Based Design, tool suppliers are intimately
involved in this transition due to their critical role in
supporting the transition. Thus, they accumulate critical
experience with a variety of organizational situations and
factors that have to be dealt with in managing a
successful (and sometimes unsuccessful) transition.
Using this accumulated experience for managing the
transition of your own organization to Model-Based
Design can significantly reduce the steepness of the
proverbial learning curve. Doing so then allows an
organization to realize the benefits of Model-Based
Design sooner than they would have otherwise. It thus
causes the return-on-investment (ROI) breakeven point
to be reached earlier. Not only is the initial ramp up on
the learning curve reduced, but learning the best
practices the tool supplier has gleaned from other
experience early on in your organization reduces the
effort required to sustain Model-Based Design, as shown
graphically in Figure 2. Thus, partnering closely with
your suppliers and involving them closely in your
transition plan allows you to leverage their experiences,
avoid common pitfalls, and negotiate a successful
transition.

Figure 2: Learning curve effects in transitioning to
Model-Based Design.

CONCLUSION

The application of Model-Based Design has been a well-
established, well-documented, and highly refined
practice for developing embedded control systems like
those used for automotive powertrain or chassis
controls. Through many years of observing and
participating in the transition of large and small,
commercial and governmental, transportation,
communications, and other embedded controls
development organizations, these best practices have
been distilled and are now being shared. These are not
hard-and-fast rules, and they may not apply in every
situation. Each organization must take a step back to
look at itself in the context of the transition to Model-
Based Design. Only then can a judicious application of
these best practices result in maximum return on the
investment in people and technology required to
modernize the embedded controls development
processes in use.

REFERENCES

1. Peter J. Schubert, Lev Vitkin, and Frank Winters,
“Executable Specs: What Makes One, and How are
They Used?” 2006 SAE World Congress, Detroit,
MI, April 2006, 2006-01-1357.

2. Jeff Thate, Larry Kendrick, and Siva Nadarajah,

“Caterpillar Automatic Code Generation,” SAE Paper
2004-01-0894.

3. https://tagteamdbserver.mathworks.com/ttserverroot

/Download/20542_91205v00_Nissan_userstory.pdf

4. Bill Potter, “Achieving Six Sigma Software Quality

Through the Use of Automatic Code Generation,”
2005 MathWorks International Aerospace and
Defense Conference:
www.mathworks.com/industries/aerospace/miadc05/
presentations/potter.pdf

5. https://tagteamdbserver.mathworks.com/ttserverroot

/Download/27372_91334v00_Ford_us.pdf

https://tagteamdbserver.mathworks.com/ttserverroot/Download/20542_91205v00_Nissan_userstory.pdf
https://tagteamdbserver.mathworks.com/ttserverroot/Download/20542_91205v00_Nissan_userstory.pdf
https://tagteamdbserver.mathworks.com/ttserverroot/Download/27372_91334v00_Ford_us.pdf
https://tagteamdbserver.mathworks.com/ttserverroot/Download/27372_91334v00_Ford_us.pdf

6. Gavin Walker, Jon Friedman, and Rob Aberg,
“Configuration Management Within Model-Based
Design,” SAE Paper 07AE-328.

7. The MathWorks, Inc. – Automotive Technical

Literature:
www.mathworks.com/industries/auto/technicalliterat
ure.html

8. Arvind Hosagrahara and Paul Smith, “Measuring
Productivity and Quality in Model-Based Design,”
SAE Paper 2005-01-1357.

9. Jon Friedman and Jason Ghidella, “Using Model-
Based Design for Automotive Systems Engineering
— Requirements Analysis of the Power Window
Example,” SAE 2006-01-1217.

10. Tom Erkkinen, “Safety-Critical Software
Development Using Automatic Production Code
Generation,” SAE Paper 07AE-168.

11. Grantley Hodge, Jian Ye, and Walt Stuart, “Multi-
Target Modeling for Embedded Software
Development for Automotive Applications,” SAE
Paper 2004-01-0269.

12. Proceedings from The MathWorks International
Automotive Conferences:

• www.mathworks.com/company/events/programs_de
/iac2004/iac_confirm.html

• www.mathworks.com/industries/auto/iac/presentatio
ns.html

• www.mathworks.com/industries/auto/iac06/presenta
tions.html

CONTACTS

Paul Smith — Consulting Services Group,
The MathWorks, Inc.
Paul.Smith@mathworks.com
www.mathworks.com

Dr. Sameer Prabhu — Applications Engineering Group,
The MathWorks, Inc.
Sameer.Prabhu@mathworks.com

Dr. Jon Friedman — Automotive Marketing Group,
The MathWorks, Inc.
Jon.Friedman@mathworks.com

*The MathWorks, Inc. retains all copyrights in the figures and excerpts of
code provided in this article. These figures and excerpts of code are used with
permission from The MathWorks, Inc. All rights reserved.

©1994-2007 by The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and
xPC TargetBox are registered trademarks and SimBiology, SimEvents, and
SimHydraulics are trademarks of The MathWorks, Inc. Other product or brand
names are trademarks or registered trademarks of their respective holder.

mailto:Paul.Smith@mathworks.com
http://www.mathworks.com/
mailto:Sameer.prabhu@mathworks.com
mailto:Jon.Friedman@mathworks.com

