
2008-01-0744

Fixed-Point ECU Development with Model-Based Design

Tom Erkkinen
The MathWorks, Inc.

Copyright © 2008 The MathWorks, Inc.

ABSTRACT

When developing production software for fixed-point
Engine Control Units (ECUs), it is important to consider
the transition from floating-point to fixed-point
algorithms. Systems engineers frequently design
algorithms in floating-point math, usually double
precision. This represents the ideal algorithm behavior
without much concern for its final realization in
production software and hardware. Software engineers
and suppliers in mass production environments,
however, are concerned with production realities and
often need to convert these algorithms to fixed-point
math for their integer-only hardware.

A key task is to design scale factors that maximize code
efficiency by minimizing the bytes used, while also
minimizing quantization effects such that the fixed-point
algorithms match the floating-point results within an
acceptable numerical margin. This floating- to fixed-point
conversion task is tedious, labor intensive, error-prone,
and often requires multiple iterations between system
and software engineers.

Model-Based Design simplifies fixed-point development
by providing tools and workflows that help the
conversion process. System engineers doing on-target
rapid prototyping for fixed-point ECUs often benefit from
automated scaling and workflow assistance to support
their initial fixed-point design. Production software
engineers benefit from automated scaling as well, but
they also require fine grain control over fixed data
specification in their modeling environment to work with
accumulator word sizes and target-specific
optimizations. In addition to providing automated scaling
and fine grain data modeling features, Model-Based
Design capabilities for fixed-point verification and
validation continue to evolve. One example is bit-
accurate, fixed-point simulation with automated
comparison to embedded software results using
processor-in-the-loop testing.

This paper presents Model-Based Design capabilities
and tools that support development and verification of
fixed-point ECU software used in mass production
vehicles.

INTRODUCTION

Model-Based Design provides executable specifications,
automatic code generation, and automated verification
and validation tools. These technologies can be used to
accelerate software development for any embedded
system. Additional engineering effort is needed to
produce the optimized designs and efficient code
needed to satisfy the resource constraints of embedded
microprocessors used in mass production. Thus, it is
important to have processes and guidelines that yield
optimal fixed-point code.

This paper presents recently developed technologies
and industry best practices for developing fixed-point
code using Model-Based Design.

The topics presented are:

� Developing the system model
� Preparing model and data for conversion
� Floating- to fixed-point conversion
� Generating optimized code
� Performing verification and validation

DEVELOPING THE SYSTEM MODEL

A case study based on a well-known fault tolerant fuel
system demonstration model (shown in Figure 1) will
help illustrate the development and verification of fixed-
point ECU software using Model-Based Design.
Because this model has been described in previous
literature [1], it will not be detailed here. However an
overview is provided to explain the model structure and
purpose.

Figure 1: System model.

The fuel control system model has three main
components: a controller model for the ECU, a plant
model for the engine gas dynamics, and several
sensors. The engine model consists of air-fuel intake
dynamics comprising both the throttle body and intake
manifold. The engine model has two inputs, engine
speed and throttle angle; and three outputs, sensed
oxygen, manifold pressure (MAP), and air-fuel ratio.

The plant model is developed using continuous time
blocks. A 10 millisecond (10 ms) sample rate is required
for the fuel rate control system algorithm.

A closed-loop simulation can be performed using the
plant and controller, plus input stimulus and output
scopes. The controller must be tolerant to sensor failure
faults. Faults can be inserted using manual switches. By
toggling the input signals to nominal or fault values,
model developers can examine the effect of the fault on
controller performance and assess the controller’s
tolerance to faults.

The control system consists of a state machine and
block diagrams. The state machine detects faults and
establishes a fueling mode. Block diagrams model the
sensor correction and fault redundancy logic, intake
airflow estimation and correction logic, and a fuel rate
calculation that concludes with a software limit on the
fuel rate output command. The control system model is
shown in Figure 2.

Figure 2: Control system model.

The control logic diagram has three states for each input
sensor: warm up, normal, and failure. The criteria for
transitioning between states are established via
threshold parameters for each sensor. A sensor failure
counter is used to track the total number of sensor
failures.

This counter is then used to determine a fueling mode. A
low fueling mode is used if there are no sensor failures;
a rich fueling mode is used for one sensor failure; and a
disabled mode is used for two or more failures. Figure 3
shows the main portions of the state machine.

Figure 3: Control logic state machine.

The intake airflow estimation and correction logic shown
in Figure 4 includes feedforward and feedback control
algorithms. Table lookups provide pumping constants
and rates.

Figure 4: Closed-loop block diagram.

The system model is then simulated and time response
results are collected for metered fuel and air/fuel ratio as
shown in figure 5.

Figure 5: System response.

This fuel system model is typical of most models initially
developed using Model-Based Design. These models
address the behavioral or functional requirements but
are not necessarily well suited for implementation on an
embedded system for a variety of reasons, such as:

� Continuous time representation of blocks is used
instead of discrete.

� Simulation results are calculated using double
precision real data types instead of integer or fixed-
point types.

� Interfaces between components such as the
controller, plant, and sensors are not well specified
or locked down.

Some organizations try to address these issues by
forcing the system developer to consider implementation
aspects during initial algorithm design. In others, system
designers are free to explore and optimize behavioral
designs using their preferred modeling style.

PREPARING MODEL AND DATA FOR
CONVERSION

After a floating-point behavioral model is developed, it
must be prepared for implementation on a fixed-point
embedded microcontroller.

Some preparation tasks are needed even if the code is
to be deployed code on a floating point processor. For
example, the embedded system will run in discrete time,
so continuous time blocks used for the embedded
algorithm should be replaced by discrete blocks. It is
possible to automate this process using conversion
utilities. Rate transition blocks can also be used to
convert the continuous-time signals to discrete-time
signals sampled at 10ms, as required by the controller.
Note that the effect of sampling on system performance
and stability must also be analyzed.

Preparing a model for conversion to fixed-point math
requires several steps outlined in the following sections.

CREATE INITIAL REFERENCE DATA

Before beginning any model conversion task, create
reference signal data for your floating point, behavioral
model. These results can be used later for equivalence
comparisons with the fixed-point model and generated
code. The results shown in Figure 5, for example, will be
used for equivalence testing of the fuel system
controller.

REPLACE UNSUPPORTED BLOCKS

Identify and replace blocks that do not support fixed-
point types. This includes replacing continuous-time with
discrete-time blocks. Start by reviewing a list of data
types supported by each block, as shown in Figure 6.

For models with Embedded MATLAB® functions,
choose those that support fixed-point. There are
hundreds of functions and blocks that support fixed-point
implementation, including all the functions an engineer
would typically use in embedded algorithm design.

Figure 6: Block data type support table.

SET UP SIGNAL LOGGING

Logging signals of interest during simulation is important
because logged signals are used for analysis and
comparison in other tasks. Model inputs and outputs are
commonly logged (as was done with the initial reference
data) but it may be helpful to log other signals to help
with conversion to fixed-point.

Engineers no longer need to specifically add blocks or
name signals to log data. It is now possible to log
unnamed signals or log all data from a selected portion
of the model subsystem hierarchy as shown in Figure 7.

Figure 7: Logging fixed-point data.

SPECIFY TARGET HARDWARE CHARACTERISTICS

The model simulation behavior and code generation
outputs are determined by target hardware
characteristics. Specifying the correct word lengths for
char, int, long, and other attributes unique to a particular
embedded microprocessor is needed to avoid producing
incorrect results during simulation or code generation.

CHECK MODEL SUITABILITY FOR PRODUCTION

Automated model checks should be used to inspect the
model’s suitability for production code deployment as
shown in Figure 8. These checks cover a broad range of
topics such as model upgrades and library links.

Some checks, such as “identify questionable fixed-point
operations” and “check hardware implementation”, are
crucial for fixed-point development. Additional checks
can be run, including checks based on the updated
MAAB guidelines [2] or safety related standards such as
IEC 61508 [3].

Figure 8: Model checks can determine a model’s suitability for
production.

CREATE SIMULATION REFERENCE DATA

If the model has changed or additional signals are
logged, create new reference signal data for the floating-
point model. These results will be used for automated
scaling and equivalence comparisons with the fixed-
point design and automatically generated code.

PREPARE FOR DATA TYPING AND SCALING

Some models are easier to convert than others.
Differences in the level of effort required are often
related to how blocks in the model were configured for
data type inheritance and other propagation settings.
During the initial design, heavy use of data propagation
speeds prototyping and allows for fast analysis and
design iterations. As the project moves closer to
production, however, it may be helpful to do less
automated propagation and more fine grain data design
for the individual data types and scaling options.

To make models easier to convert:

� Remove output data type inheritance, especially in
cases that lead to data type propagation conflicts.

� Relax input data type settings or constraints that
might lead to data type propagation errors.

� Ensure state charts have strong data typing with
Simulink®.

� Specify block minimum and maximum values for
block output and parameter minimum and maximum
values, if known.

FLOATING- TO FIXED-POINT CONVERSION

It is possible to examine each block and manually scale
it according to the specified range and desired precision.
The new data type assistant feature within the Block
Parameter dialog box facilitates this approach by
calculating appropriate fixed-point scaled data types
based on specified minimum and maximum values.
Figure 9 shows this dialog box for a Sum block.

Figure 9: Data Type Assistant for a Sum block.

During the scaling process, in addition to the input and
output signals, engineers should consider the
intermediate calculations that use an accumulator. In
previous releases, blocks used the user-specified output
data type to perform all operations. In some cases, this
behavior could cause precision loss and saturation
during intermediate operations. In recent releases, the
addition, subtraction, and summation blocks use an ideal
accumulator data type based on the hardware
characteristics when performing intermediate operations.
Consequently, these blocks now produce more precise
results and code is generated with less saturation
checks.

Another approach to manual scaling uses the Fixed-
Point Tool and its automatic scaling feature to convert
from floating- to fixed-point. It is possible to lock down
each block and prevent it from being modified by the
auto scaling tool. This allows you to use automatic
scaling in conjunction with individually scaled blocks.
The autoscale function computes the scaling information
based on the individually scaled blocks and reference
data prepared for the floating-point model. Engineers
can then accept or reject the proposed scaling for each
signal.

It is also possible to perform data type override and
compare double precision results to the scaled fixed-
point results. This allows a project to use one model for
both floating- and fixed-point design. Another technique
to target one model for floating- or fixed-point designs is
to substitute different data dictionaries as previously
described [4].

In addition to comparison plots, the Fixed-Point Tool
also records the number of overflows and saturations
that occurred. Figure 10 shows the tool and its proposed
scaling for the Fuel System model.

The Sum block is shown to have reached its overflow
saturation check 7664 times during the simulation.
Hence, the automatic scaler proposes to change the
fraction length from 11 to 10 bits to provide the extra
range needed with maximum precision.

Figure 10: Fixed Point Tool for automatic scaling.

GENERATING OPTIMIZED CODE

Prior to generating code, it is advisable to disable the
signal logging used during the fixed point conversion.
This will avoid declaring extra signal memory in the
generated code.

Model Advisor checks for Real-Time Workshop®
Embedded Coder software should also be run. This will
check many code efficiency improvement areas such as:

� Identifying blocks that generate expensive saturation
and rounding code.

� Identifying questionable fixed-point operations.
� Inspecting lookup tables to ensure they are properly

spaced for maximizing code efficiency.

Producing code from an optimized design is a
straightforward step of selecting a deployment target
and generating code. The production code targeting
options range from the default ANSI/ISO C, to target
optimized algorithm code, to a highly customized
deployment target that includes calls to device drivers. It
is also possible to target middleware and abstraction
layers such as AUTOSAR™.

For ANSI/ISO C, an Embedded Real-Time Target (ERT)
option exists that is optimized for fixed-point code as
shown in Figure 11.

Figure 11: ANSI-C optimized fixed-point target using Real-Time
Workshop® Embedded Coder™.

Other than word sizes and other target characteristic
settings, this code is portable and can be deployed on
any target with the specified word sizes.

For target optimized code, a number of options exist.
The first is to have the generated code call an existing C
function at the appropriate point within the algorithm.
One method A second option is to use Legacy Code
Tool in Simulink.

Another newer option is to replace generated code math
functions and operators with target-specific versions.
This is done using Target Function Libraries (TFL). TFL
requires the end user to create a table mapping default

functions and operators to their target specific
equivalents. The TFL is then available as a code
generation option. Figure 12 shows the Infineon®
TriCore® TFL as an example.

Figure 12: Selecting optimized Target Function Libraries.

Once a TFL is selected, the generated code will
incorporate the replacement items seamlessly. See
Figure 13 for a comparison of ANSI-C and TriCore
optimized code for fixed-point add of 32-bit integers with
saturation logic. Not only is the code smaller, the
execution time also decreases dramatically.

In one example, the optimized code ran faster than
ANSI-C code by a factor of 17. Of course, this code is no
longer portable. However, it is easy to change the TFL
choice in your model to target another device.

Figure 13: ANSI-C and TriCore optimized fixed-point code using TFL

The final deployment option involves building a complete
application involving algorithms, device drivers, and
operating system software. Several options exist for this
process: using The MathWorks™ target products, using
third-party commercial target products, or building a
custom target with documented procedures and APIs.

Commercially available compiler tool chain and
processor target support packages [6] should be
reviewed before building a custom target.

PERFORMING VERIFICATION AND VALIDATION

The reference data collected from the floating-point
behavioral model can be reused for equivalence testing
throughout the development process. It is first used to
compare the results of fixed-point design to the original
floating-point model. The comparison is done frequently
and it is important to note that code generation is not
needed during this step since bit-accurate fixed-point
simulation is provided by Simulink® Fixed Point™.

The next use may be in software-in-the-loop (SIL)
testing. This occurs on the host computer and makes it
easy for the generated code to run with the original plant
model or test harness. The generated code may include
legacy code. Target-specific code, however, cannot be
tested since it cannot execute on the host computer.

Testing code on the target processor is done using
processor-in-the-loop (PIL) testing. PIL testing co-
simulates the code (in this case actual object code) on
an Instruction Set Simulator or embedded hardware with
the original plant model or test harness in Simulink.

The MathWorks offers a variety of link products that
automate PIL testing using commercial Integrated
Development Environments (IDEs). It is possible to run
PIL testing on processors supported by these IDEs.

Model verification using analysis instead of simulation
can also be done using Simulink® Design Verifier™
software, which automatically generates test cases
based on structural coverage criteria and enables formal
proofs and analysis.

Code verification through analysis instead of simulation
can also be done using Polyspace™ products, which
formally analyze code to identify common code defects
such as fixed-point overflow, divide-by-zero, and array
out of bounds checks.

CONCLUSION

Model-Based Design with automatic code generation is
increasingly important advantageous in automotive
software development. Advances in fixed-point tools are
occurring rapidly. Software engineers need to stay
current on the technology and understand how to best
apply it for mass production environments. This paper
provided an update on these topics.

REFERENCES

1. “A Seamless Implementation of Model-Based
Design Applied to a New Fuel Control Feature
for an Existing Engine ECU”, by Thomas
Erkkinen, The MathWorks, and Koos
Zwaanenburg, ETAS, SAE Technical Paper No.
2006-01-0612, April 2006.

2. “Controller Style Guidelines for Production
Intent Using MATLAB®, Simulink® and
Stateflow® - Version 2,” MathWorks Automotive
Advisory Board (MAAB), dated July 2007,
www.mathworks.com/industries/auto/maab.html

3. IEC 61508-3:1998. International Standard IEC
61508 Functional safety of electrical/electronic/
programmable electronic safety-related systems
– Part 3: Software requirements. 1st edition,1998

4. “Multi-Target Modeling for Embedded Software
Development for Automotive Applications”, by
Grantley Hodge, et al, Visteon Corp, SAE
Technical Paper No. 2004-01-0269, March
2004,
www.visteon.com/whitepapers/2004_01_0269.pdf

5. “Fixed-Point Modeling and Code Generation
Tips”, by Vinod Reddy, Siva Nadarajah and
George Beals, MATLAB Central, dated 2008
www.mathworks.com/matlabcentral/fileexchange/load
File.do?objectId=7197&objectType=file

6. Real-Time Workshop® Embedded Coder
Supported Hardware, by The MathWorks,
http://www.mathworks.com/products/rtwembedded/su
pportedio.html

CONTACT

Tom Erkkinen, Embedded Applications Manager, The
MathWorks, Inc.

Tom leads a MathWorks initiative to foster industry
adoption of production code generation technologies.
Before joining The MathWorks, he worked at Lockheed-
Martin and NASA developing a variety of control
algorithms and real-time software. Tom holds a B.S.
degree in Aerospace Engineering from Boston
University and an M.S. degree in Mechanical
Engineering from Santa Clara University.

tom.erkkinen@mathworks.com

The MathWorks, Inc. retains all copyrights in the figures and excerpts of code
provided in this article. These figures and excerpts of code are used with
permission from The MathWorks, Inc. All rights reserved.

©1994-2008 by The MathWorks, Inc.

MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See www.mathworks.com/trademarks for a list of additional trademarks.
Other product or brand names may be trademarks or registered trademarks of
their respective holders.

POST SAE UPDATE (May 2008): Release 2008a of Simulink Fixed Point
includes the Fixed Point Advisor that automates many of the float- to
fixed-point conversion tasks described herein.

http://www.mathworks.com/industries/auto/maab.html
http://www.visteon.com/whitepapers/2004_01_0269.pdf
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=7197&objectType=file
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=7197&objectType=file
http://www.mathworks.com/products/rtwembedded/supportedio.html
http://www.mathworks.com/products/rtwembedded/supportedio.html
mailto:tom.erkkinen@mathworks.com

