

The Engineering Meetings Board has approved this paper for publication. It has successfully completed SAE’s peer review process under the supervision of the
session organizer. This process requires a minimum of three (3) reviews by industry experts.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.
ISSN 0148-7191
Positions and opinions advanced in this paper are those of the author(s) and not necessarily those of SAE. The author is solely responsible for the content of
the paper.
SAE Customer Service: Tel: 877-606-7323 (inside USA and Canada)
 Tel: 724-776-4970 (outside USA)
 Fax: 724-776-0790
 Email: CustomerService@sae.org
SAE Web Address: http://www.sae.org

Printed in USA

2009-01-0269

Fixed-Point ECU Code Optimization and Verification with Model-Based Design

Tom Erkkinen
The MathWorks

Copyright © 2009 The MathWorks. Published by SAE International with permission.

ABSTRACT

When implementing production software for fixed-point
engine control units (ECUs) it is important to consider
the code optimization and code verification strategies for
the embedded algorithms. System and software
engineers work together to design algorithms that satisfy
the system performance requirements without significant
numerical quantization results. Software engineers and
suppliers in mass production environments then
implement the design on an embedded system with
limited memory and execution speed resources. The
primary goals after design are to generate optimized
code and verify that the implementation matches the
original model’s functional behavior.

Model-Based Design simplifies fixed-point development
by providing tools and workflows that support the
complete design, implementation, and verification
processes. System engineers performing on-target rapid
prototyping for fixed-point ECUs benefit from automated
scaling workflows that provide an initial fixed-point
design. Production software engineers benefit from
automated scaling as well, but they then require fine-
grain control over fixed-point data specification within
their modeling environment for items such as
accumulator word size. Eventually a detailed software
design is produced.

Automatic code generation is then invoked with options
that maximize code efficiency for fixed-point processors.
These options include portable ANSI/ISO C
optimizations, plus target-specific optimizations.
Automated checking tools and workflow advisors help
ensure the appropriate optimization settings are
enabled. Capabilities exist for fixed-point verification and
validation, including bit-accurate fixed-point simulation
and automated processor-in-the-loop testing. The latter

is particularly useful when using target-optimized code,
because the code cannot be simulated on the host and
can only be tested on the actual embedded target.

This paper presents Model-Based Design capabilities
and tools that support verification of optimized fixed-
point ECU software used in mass production vehicles.

INTRODUCTION

With Model-Based Design, code is generated from
models and then verified using software-in-the-loop
(SIL), processor-in-the-loop (PIL), and hardware-in-the-
loop (HIL) testing. These techniques support incremental
verification and test reuse. The initial test cases are
developed and tested using the algorithm and plant (or
environment) model within the simulation environment.

For SIL, source code is generated from the algorithm
and compiled using the host compiler. The tests
developed earlier for the model are reused and executed
with the host-compiled algorithm code. The results are
compared to the original model behavior and analysis is
performed to ensure an accurate match.

For PIL, source code is generated from the algorithm
and cross-compiled on the host for deployment on an
embedded microprocessor target. The tests developed
earlier are again reused and executed with the target
compiled algorithm code running on embedded target
hardware or an instruction set simulator provided by the
cross-compiler. The results are compared to the original
model behavior and analysis is performed to ensure an
accurate match.

For HIL, source code is generated from the plant or
environment model and the code is compiled for
deployment on a real-time simulator. The real-time

simulator then communicates directly with the
embedded ECU containing the microprocessor used
during a PIL test. The tests developed earlier are reused
and executed, but this time using hard real-time
execution. The results are compared to the original
model behavior and analysis is performed to ensure an
accurate match.

This verification approach for Model-Based Design is
well established, as is the ability to generate optimized
ANSI/ISO C code using model patterns and style
guidelines [1]. PIL solutions based on specified cross-
compiler or IDE tool chains are also well established [2].

What is more recent and described herein are
technologies that facilitate generation of target-optimized
code and enable PIL testing for any general-purpose
embedded microprocessor target environment. This
technology is available with the Real-Time Workshop
Embedded Coder product from The MathWorks [3].

GENERATING TARGET-OPTIMIZED CODE
USING TARGET FUNCTION LIBRARIES

One method to optimize source code for specific targets
is to incorporate existing (or legacy) target-optimized
code using the Legacy Code Tool. For this, engineers
specify the legacy function’s call signature including its
interfaces, using a MATLAB API. When executed, a
Simulink S-Function is created which allows the legacy
code to be simulated and called appropriately by the
generated code. Another way to generate optimized
source code involves target function libraries.

INTRODUCTION TO TARGET FUNCTION LIBRARIES
- Target function libraries (TFLs) are MATLAB APIs that
allow engineers to create and register tables of code
segments that replace the default code segments
generated by Real-Time Workshop Embedded Coder.

TFLs currently support a variety of math functions such
as sin, cos, pow, sqrt. and operators including:

 + (addition)
 − (subtraction)
 * (multiplication)
 / (division)

Advanced TFLs also exist for additional code
replacements such as memory copy (memcpy).

Once a TFL table is created, it must be registered so
that Simulink can incorporate the custom TFL table with
default tables that are provided within the code
generation options panel. The creation of a TFL and its
registration use the TFL API and created MATLAB files.

Once created and registered, TFL tables can be
selected for a model based on its embedded target
configuration. If the target configuration changes, the

model developer simply needs to select a different TFL.
This is a major benefit over S-Function based
approaches to target optimization, since S-Functions are
blocks that are placed inside of models, so switching
targets requires switching blocks, which can be a
tedious process. It is much easier to leave the blocks as
is within the model, and instead substitute a different
target configuration using a build script or simple user
interface option toggle prior to the code generation
process.

When a TFL is selected for a model, the individual
entries that comprise the TFL tables can be displayed
using a viewer or with a library tool tip. Within each
table, if multiple matches are found for a TFL entry
object, the priority level determines the match that is
returned. A higher-priority (lower-numbered) entry is
used over a similar entry with a lower priority (higher
number).

USING TARGET FUNCTION LIBRARIES - The general
steps for creating and using a target function library are
as follows:

1. Create a TFL replacement table using the TFL API.
2. Register the TFL table using a registration file.
3. Confirm the TFL implementation using a viewer.
4. Select the TFL using the code generation interface

panel.
5. Generate the code and observe the replacements.

An example TFL that illustrates the general steps
follows. It replaces the default division operator with a
more robust version that prevents division by zero.
Instead of the division operator ‘/’, a function will be
called that examines the denominator and returns a
nominal value or default value based on the floating-
point data type size. Thus, two robust division functions
are required to be generated based on the data types
used in the model: one function for doubles and another
for singles, _rdbl_div() and _rsgl_div(), respectively.
The example is written in ANSI-C and can execute on a
host or target environment.

1. Create a TFL Replacement Table

A TFL table entry definition requires the implementation
function or operator name (e.g., _rdbl_div) as well as
the source and header files in which the function is
defined and declared. The TFL also requires additional
information, such as the priority in case of conflicts from
an entry from 0 to 100, where 0 has highest priority. The
number of and types of arguments are also specified.
Figure 1 shows the entire TFL definition for the double
data type division replacement operators. A similar TFL
is defined for the single-precision operator
replacements, but is not shown.

Figure 1. TFL definition file (tfl_table_robust_div.m).

2. Register the TFL Table

To use a TFL, it must be registered within the modeling
environment. Registration information includes the name
of the TFL displayed to the model developer and the
base TFL that the replacement TFL is derived from. The
registration information is written using a MATLAB
based API and is stored in a file named
sl_customization.m. The registration file(s) need to be on
the MATLAB path or local working directory. See Figure
2 for the example registration.

Figure 2. TFL registration file (sl_customization.m).

3. Confirm the TFL Implementation

Engineers can view their custom TFL implementations
along with TFLs provided by Real-Time Workshop

Embedded Coder using a viewer. To invoke the viewer,
type the view command at the MATLAB prompt,
RTW.ViewTfl. A window similar to that shown in Figure
3 is displayed.

Figure 3. TFL Viewer.

4. Select the TFL

After a TFL has been developed and registered, it can
be used by any model via a pull-down menu within the
code generation configuration panel or via a build script.
The developer simply needs to select the appropriate
TFL and generate code.

For the example, the simple model shown in Figure 4
contains division operations in the form of Simulink
blocks, Stateflow charts, and Embedded MATLAB
functions, all of which are supported by TFLs. Note that
you can also use the TFL for code generated directly
from MATLAB using the emlc command. The
subsystem and function use single-precision floats, while
the chart uses double-precision.

Figure 4. Example division model (clockwise from
top left): top-level model, Simulink subsystem,
Embedded MATLAB function, and Stateflow chart.

Real-Time Workshop Embedded Coder generates
production code with default ANSI-C TFL. Code is then
regenerated using the custom TFL for robust divisions.
See Figures 5 and 6 for a comparison of the resulting
source code.

Figure 5. Code generated from example model
using ANSI-C (default).

Figure 6. Code generated from example model
using custom TFL (robust division).

There are many uses for TFLs beyond implementing
robustness code. Production applications often use
special hardware instructions, or pragmas, to provide

optimized fixed-point math with overflow and underflow
protection, as well as fast signal processing routines
such as FFTs. Some organizations also use their own
custom functions for fixed-point operations in the
generated code.

If the replacements are based on ANSI-C code and are
host compliable, it is easy to verify the functional
behavior using SIL. If the code uses target hardware or
cross-compiled features, then it can only be tested on
the target using techniques including PIL and HIL. An
approach for developing a custom PIL environment
using recently published APIs follows.

VERIFYING TARGET-OPTIMIZED CODE USING
PIL APIs

During PIL simulation, Simulink simulates the non-PIL
part of the model, such as the plant model, for one
sample interval and sends output signals to the target
platform. When the target receives the signals, it
executes the PIL algorithm for one sample step and
returns its output signals back to Simulink. At this point,
one sample cycle of the simulation is complete and the
model proceeds to the next sample interval. The process
repeats and simulation progresses. At each sample
period, the model test harness and object code
exchange all I/O data. PIL simulations do not run in real
time.

Two techniques are available for PIL: using PIL blocks
and using PIL simulation mode. The use of PIL blocks is
similar to other legacy code or communication
approaches. An S-Function block is created during the
code generation process that provides an interface to
the target compiled algorithm code. Developers then
place the PIL block in the model, either as a
replacement for the existing algorithm subsystem, or, if
the model is not too large, in parallel with it.

As with TFLs, some developers prefer to not add blocks
or constructs to their model to do PIL simulation and
want a more seamless approach. This is now possible
with the PIL simulation mode and accompanying APIs
released with R2008b by The MathWorks in October
2008.

INTRODUCTION TO PIL MODE AND PIL APIS - A
Model block can be configured to run in normal
(interpreted) simulation, accelerated simulation using the
generated and host-compiled code running, or PIL
mode. In PIL mode, the referenced model is a conduit
that gives the model access to the generated and cross-
compiled code running in the target environment. When
a Model block is in PIL mode, the label (PIL) appears on
the block.

USING PIL SIMULATION MODE AND PIL APIs - With
Model block PIL mode, a Processor-in-the-Loop (PIL)
Connectivity API is used to establish communication

with the target processor. With so many different target
environments, there are numerous, ever- changing tools
and approaches for building, downloading, and
communicating with an executable. So having an API for
custom integration, as opposed to point solutions or
products sold and maintained by vendors, is often
preferred by production organizations.

Once the PIL communication is established and PIL
simulation is started, an automated procedure begins:

1. Build the PIL application (i.e., target executable).
2. Download the executable to the target.
3. Run the executable.
4. Start communication between the model and

executable.

The above functionalities are enabled using the PIL
Target Connectivity API components shown in Figure 7.

Figure 7. PIL target connectivity API components.

The communications part of the target connectivity API
builds upon the rtiostream API, which implements a
communication channel to exchange data between
different processes such as a host-target
communications channel. The communications channel
comprises separate driver code running on the host and
target. The rtiostream API defines the signature of
both target-side and host-side functions that must be
implemented by this driver code.

The API is independent of the physical layer used to
send the data. Possible physical layers include RS232,
Ethernet, or Controller Area Network (CAN). Developing

(or acquiring) host and target drivers are the primary
tasks to be done before beginning a PIL implementation
using the PIL APIs.

Once the basic communication interfaces are written,
the general steps to implement a PIL environment are:

1. Create the basic PIL connectivity framework using
rtw.connectivity.Config

2. Create a mechanism to configure the build process
using rtw.connectivity.MakefileBuilder

3. Create a mechanism to download and execute the
application using rtw.connectivity.Launcher

4. Establish a communications implementation using
rtiostream for:
 Target-side driver code integration using

rtw.pil.RtIOStreamApplicationFramewo
rk

 Host-side driver code integration using
rtw.connectivity.RtIOStreamHostCommu
nicator

5. Register the PIL configuration for use with Simulink
using the rtw.connectivity.ConfigRegistry
and an sl_customization.m file

A processor-in-the-loop example is provided below. The
example is based on a TCP/IP implementation and runs
the target as a separate process on the host computer.
Figure 8 shows a segment of the PIL implementation for
the example.

Figure 8. PIL API example.

With the PIL connectivity components established, it is
straightforward to run a PIL test. The example in Figure
9 has two model blocks that reference the same model,
a simple counter. The top block is set to PIL simulation
mode, which uses the TCP/IP communication described
above. The bottom model block is set to normal mode
and simulates the counter using Simulink. The plots on
the right show the counter output results for PIL mode
(top), Normal mode (bottom), and the difference or error
between the two results (middle).

Figure 9. PIL model and execution results.

In this simple example, there was no error. In more
sophisticated models, differences might arise from a
variety of sources, including floating-point numerical
approximation differences between host and target
compilers and hardware.

CONCLUSION

This paper introduces recently developed technologies
that further enable organizations to adopt Model-Based
Design for embedded system deployment and
verification. The first technology involves generation of
target-optimized code using target function libraries.
These APIs make it easy for production organizations to
substitute their processor-specific code for default
ANSI/ISO C generated by Real-Time Workshop
Embedded Coder.

The second technology involves Processor-in-the-Loop
(PIL) APIs that let engineers develop an automated test
environment for running a model in cosimulation with the
actual generated and cross-compiled production code
on the target microprocessor or instruction set simulator.

Using both technologies together allows engineers to
generate and verify highly optimized target code in a
way that is generic and customizable. This flexibility is
important, since every organization has unique hardware
and software needs that point solutions and add-on
products from vendors cannot always address.

REFERENCES

1. B. Chou, S. Mahapatra, “Techniques for Generating
and Measuring Production Code Constructs from
Controller Models,” SAE Paper Offer 09AE-0021.

2. T. Erkkinen, S. Breiner, “Automatic Code
Generation – Technology Adoption Lessons
Learned from Commercial Vehicle Case Studies,”
SAE Paper 2007-01-4249.

3. MathWorks Release 2008b, The MathWorks, Inc.
www.mathworks.com

MATLAB and Simulink are registered trademarks of The MathWorks,
Inc. See www.mathworks.com/trademarks for a list of additional
trademarks. Other product or brand names may be trademarks or
registered trademarks of their respective holders.

