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ABSTRACT 

When implementing production software for fixed-point 
engine control units (ECUs) it is important to consider 
the code optimization and code verification strategies for 
the embedded algorithms. System and software 
engineers work together to design algorithms that satisfy 
the system performance requirements without significant 
numerical quantization results. Software engineers and 
suppliers in mass production environments then 
implement the design on an embedded system with 
limited memory and execution speed resources. The 
primary goals after design are to generate optimized 
code and verify that the implementation matches the 
original model’s functional behavior. 

Model-Based Design simplifies fixed-point development 
by providing tools and workflows that support the 
complete design, implementation, and verification 
processes. System engineers performing on-target rapid 
prototyping for fixed-point ECUs benefit from automated 
scaling workflows that provide an initial fixed-point 
design. Production software engineers benefit from 
automated scaling as well, but they then require fine-
grain control over fixed-point data specification within 
their modeling environment for items such as 
accumulator word size.  Eventually a detailed software 
design is produced. 

Automatic code generation is then invoked with options 
that maximize code efficiency for fixed-point processors. 
These options include portable ANSI/ISO C 
optimizations, plus target-specific optimizations. 
Automated checking tools and workflow advisors help 
ensure the appropriate optimization settings are 
enabled. Capabilities exist for fixed-point verification and 
validation, including bit-accurate fixed-point simulation 
and automated processor-in-the-loop testing. The latter 

is particularly useful when using target-optimized code, 
because the code cannot be simulated on the host and 
can only be tested on the actual embedded target. 

This paper presents Model-Based Design capabilities 
and tools that support verification of optimized fixed-
point ECU software used in mass production vehicles. 

INTRODUCTION 

With Model-Based Design, code is generated from 
models and then verified using software-in-the-loop 
(SIL), processor-in-the-loop (PIL), and hardware-in-the-
loop (HIL) testing. These techniques support incremental 
verification and test reuse. The initial test cases are 
developed and tested using the algorithm and plant (or 
environment) model within the simulation environment.  

For SIL, source code is generated from the algorithm 
and compiled using the host compiler. The tests 
developed earlier for the model are reused and executed 
with the host-compiled algorithm code. The results are 
compared to the original model behavior and analysis is 
performed to ensure an accurate match. 

For PIL, source code is generated from the algorithm 
and cross-compiled on the host for deployment on an 
embedded microprocessor target. The tests developed 
earlier are again reused and executed with the target 
compiled algorithm code running on embedded target 
hardware or an instruction set simulator provided by the 
cross-compiler. The results are compared to the original 
model behavior and analysis is performed to ensure an 
accurate match. 

For HIL, source code is generated from the plant or 
environment model and the code is compiled for 
deployment on a real-time simulator. The real-time 



 

simulator then communicates directly with the 
embedded ECU containing the microprocessor used 
during a PIL test. The tests developed earlier are reused 
and executed, but this time using hard real-time 
execution. The results are compared to the original 
model behavior and analysis is performed to ensure an 
accurate match. 

This verification approach for Model-Based Design is 
well established, as is the ability to generate optimized 
ANSI/ISO C code using model patterns and style 
guidelines [1]. PIL solutions based on specified cross-
compiler or IDE tool chains are also well established [2]. 

What is more recent and described herein are 
technologies that facilitate generation of target-optimized 
code and enable PIL testing for any general-purpose 
embedded microprocessor target environment. This 
technology is available with the Real-Time Workshop 
Embedded Coder product from The MathWorks [3]. 

GENERATING TARGET-OPTIMIZED CODE 
USING TARGET FUNCTION LIBRARIES 

One method to optimize source code for specific targets 
is to incorporate existing (or legacy) target-optimized 
code using the Legacy Code Tool. For this, engineers 
specify the legacy function’s call signature including its 
interfaces, using a MATLAB API. When executed, a 
Simulink S-Function is created which allows the legacy 
code to be simulated and called appropriately by the 
generated code. Another way to generate optimized 
source code involves target function libraries.  
 
INTRODUCTION TO TARGET FUNCTION LIBRARIES 
- Target function libraries (TFLs) are MATLAB APIs that 
allow engineers to create and register tables of code 
segments that replace the default code segments 
generated by Real-Time Workshop Embedded Coder.  

TFLs currently support a variety of math functions such 
as sin, cos, pow, sqrt. and operators including: 

 + (addition) 
 − (subtraction) 
 * (multiplication) 
 / (division) 
 
Advanced TFLs also exist for additional code 
replacements such as memory copy (memcpy). 

Once a TFL table is created, it must be registered so 
that Simulink can incorporate the custom TFL table with 
default tables that are provided within the code 
generation options panel. The creation of a TFL and its 
registration use the TFL API and created MATLAB files. 

Once created and registered, TFL tables can be 
selected for a model based on its embedded target 
configuration. If the target configuration changes, the 

model developer simply needs to select a different TFL. 
This is a major benefit over S-Function based 
approaches to target optimization, since S-Functions are 
blocks that are placed inside of models, so switching 
targets requires switching blocks, which can be a 
tedious process. It is much easier to leave the blocks as 
is within the model, and instead substitute a different 
target configuration using a build script or simple user 
interface option toggle prior to the code generation 
process. 

When a TFL is selected for a model, the individual 
entries that comprise the TFL tables can be displayed 
using a viewer or with a library tool tip. Within each 
table, if multiple matches are found for a TFL entry 
object, the priority level determines the match that is 
returned. A higher-priority (lower-numbered) entry is 
used over a similar entry with a lower priority (higher 
number). 

USING TARGET FUNCTION LIBRARIES - The general 
steps for creating and using a target function library are 
as follows: 

1. Create a TFL replacement table using the TFL API. 
2. Register the TFL table using a registration file. 
3. Confirm the TFL implementation using a viewer. 
4. Select the TFL using the code generation interface 

panel. 
5. Generate the code and observe the replacements. 
 
An example TFL that illustrates the general steps 
follows. It replaces the default division operator with a 
more robust version that prevents division by zero. 
Instead of the division operator ‘/’, a function will be 
called that examines the denominator and returns a 
nominal value or default value based on the floating-
point data type size. Thus, two robust division functions 
are required to be generated based on the data types 
used in the model: one function for doubles and another 
for singles, _rdbl_div() and _rsgl_div(), respectively. 
The example is written in ANSI-C and can execute on a 
host or target environment. 

1. Create a TFL Replacement Table 

A TFL table entry definition requires the implementation 
function or operator name (e.g., _rdbl_div) as well as 
the source and header files in which the function is 
defined and declared. The TFL also requires additional 
information, such as the priority in case of conflicts from 
an entry from 0 to 100, where 0 has highest priority. The 
number of and types of arguments are also specified. 
Figure 1 shows the entire TFL definition for the double 
data type division replacement operators. A similar TFL 
is defined for the single-precision operator 
replacements, but is not shown.  



 

 
 
Figure 1. TFL definition file (tfl_table_robust_div.m). 
 
2. Register the TFL Table  

To use a TFL, it must be registered within the modeling 
environment. Registration information includes the name 
of the TFL displayed to the model developer and the 
base TFL that the replacement TFL is derived from. The 
registration information is written using a MATLAB 
based API and is stored in a file named 
sl_customization.m. The registration file(s) need to be on 
the MATLAB path or local working directory. See Figure 
2 for the example registration.  
 

 
 
Figure 2. TFL registration file (sl_customization.m). 
 
3. Confirm the TFL Implementation  

Engineers can view their custom TFL implementations 
along with TFLs provided by Real-Time Workshop 

Embedded Coder using a viewer. To invoke the viewer, 
type the view command at the MATLAB prompt, 
RTW.ViewTfl. A window similar to that shown in Figure 
3 is displayed. 
 

 
 
Figure 3. TFL Viewer. 
 
4. Select the TFL  

After a TFL has been developed and registered, it can 
be used by any model via a pull-down menu within the 
code generation configuration panel or via a build script. 
The developer simply needs to select the appropriate 
TFL and generate code.  
 
For the example, the simple model shown in Figure 4 
contains division operations in the form of Simulink 
blocks, Stateflow charts, and Embedded MATLAB 
functions, all of which  are supported by TFLs. Note that 
you can also use the TFL for code generated directly 
from MATLAB using the emlc command. The 
subsystem and function use single-precision floats, while 
the chart uses double-precision. 

 
 
Figure 4. Example division model (clockwise from 
top left): top-level model, Simulink subsystem, 
Embedded MATLAB function, and Stateflow chart.   



 

 
Real-Time Workshop Embedded Coder generates 
production code with default ANSI-C TFL. Code is then 
regenerated using the custom TFL for robust divisions. 
See Figures 5 and 6 for a comparison of the resulting 
source code. 

 
 
Figure 5.  Code generated from example model 
using ANSI-C (default). 
 

 
 
Figure 6.  Code generated from example model 
using custom TFL (robust division). 
 
There are many uses for TFLs beyond implementing 
robustness code. Production applications often use 
special hardware instructions, or pragmas, to provide 

optimized fixed-point math with overflow and underflow 
protection, as well as fast signal processing routines 
such as FFTs. Some organizations also use their own 
custom functions for fixed-point operations in the 
generated code. 

If the replacements are based on ANSI-C code and are 
host compliable, it is easy to verify the functional 
behavior using SIL. If the code uses target hardware or 
cross-compiled features, then it can only be tested on 
the target using techniques including PIL and HIL. An 
approach for developing a custom PIL environment 
using recently published APIs follows. 

VERIFYING TARGET-OPTIMIZED CODE USING 
PIL APIs 

During PIL simulation, Simulink simulates the non-PIL 
part of the model, such as the plant model, for one 
sample interval and sends output signals to the target 
platform. When the target receives the signals, it 
executes the PIL algorithm for one sample step and 
returns its output signals back to Simulink. At this point, 
one sample cycle of the simulation is complete and the 
model proceeds to the next sample interval. The process 
repeats and simulation progresses. At each sample 
period, the model test harness and object code 
exchange all I/O data. PIL simulations do not run in real 
time. 

Two techniques are available for PIL: using PIL blocks 
and using PIL simulation mode. The use of PIL blocks is 
similar to other legacy code or communication 
approaches. An S-Function block is created during the 
code generation process that provides an interface to 
the target compiled algorithm code. Developers then 
place the PIL block in the model, either as a 
replacement for the existing algorithm subsystem, or, if 
the model is not too large, in parallel with it. 

As with TFLs, some developers prefer to not add blocks 
or constructs to their model to do PIL simulation and 
want a more seamless approach. This is now possible 
with the PIL simulation mode and accompanying APIs 
released with R2008b by The MathWorks in October 
2008. 

INTRODUCTION TO PIL MODE AND PIL APIS - A 
Model block can be configured to run in normal 
(interpreted) simulation, accelerated simulation using the 
generated and host-compiled code running, or PIL 
mode. In PIL mode, the referenced model is a conduit 
that gives the model access to the generated and cross-
compiled code running in the target environment. When 
a Model block is in PIL mode, the label (PIL) appears on 
the block. 

USING PIL SIMULATION MODE AND PIL APIs - With 
Model block PIL mode, a Processor-in-the-Loop (PIL) 
Connectivity API is used to establish communication 



 

with the target processor. With so many different target 
environments, there are numerous, ever- changing tools 
and approaches for building, downloading, and 
communicating with an executable. So having an API for 
custom integration, as opposed to point solutions or 
products sold and maintained by vendors, is often 
preferred by production organizations. 

Once the PIL communication is established and PIL 
simulation is started, an automated procedure begins: 

1. Build the PIL application (i.e., target executable). 
2. Download the executable to the target. 
3. Run the executable. 
4. Start communication between the model and 

executable. 
 
The above functionalities are enabled using the PIL 
Target Connectivity API components shown in Figure 7. 

 
 
Figure 7.  PIL target connectivity API components. 
 
The communications part of the target connectivity API 
builds upon the rtiostream API, which implements a 
communication channel to exchange data between 
different processes such as a host-target 
communications channel. The communications channel 
comprises separate driver code running on the host and 
target. The rtiostream API defines the signature of 
both target-side and host-side functions that must be 
implemented by this driver code.  

The API is independent of the physical layer used to 
send the data. Possible physical layers include RS232, 
Ethernet, or Controller Area Network (CAN). Developing 

(or acquiring) host and target drivers are the primary 
tasks to be done before beginning a PIL implementation 
using the PIL APIs. 

Once the basic communication interfaces are written, 
the general steps to implement a PIL environment are: 

1. Create the basic PIL connectivity framework using 
rtw.connectivity.Config 

2. Create a mechanism to configure the build process 
using rtw.connectivity.MakefileBuilder  

3. Create a mechanism to download and execute the 
application using rtw.connectivity.Launcher  

4. Establish a communications implementation using 
rtiostream for: 
 Target-side driver code integration using  

rtw.pil.RtIOStreamApplicationFramewo
rk 

 Host-side driver code integration using 
rtw.connectivity.RtIOStreamHostCommu
nicator 

5. Register the PIL configuration for use with Simulink 
using the rtw.connectivity.ConfigRegistry 
and an sl_customization.m file 

 
A processor-in-the-loop example is provided below. The 
example is based on a TCP/IP implementation and runs 
the target as a separate process on the host computer.  
Figure 8 shows a segment of the PIL implementation for 
the example.  

 
 
Figure 8. PIL API example. 
 
With the PIL connectivity components established, it is 
straightforward to run a PIL test. The example in Figure 
9 has two model blocks that reference the same model, 
a simple counter. The top block is set to PIL simulation 
mode, which uses the TCP/IP communication described 
above. The bottom model block is set to normal mode 
and simulates the counter using Simulink. The plots on 
the right show the counter output results for PIL mode 
(top), Normal mode (bottom), and the difference or error 
between the two results (middle). 



 

 
 
Figure 9. PIL model and execution results. 
 
In this simple example, there was no error. In more 
sophisticated models, differences might arise from a 
variety of sources, including floating-point numerical 
approximation differences between host and target 
compilers and hardware.  

CONCLUSION 

This paper introduces recently developed technologies    
that further enable organizations to adopt Model-Based 
Design for embedded system deployment and 
verification. The first technology involves generation of 
target-optimized code using target function libraries. 
These APIs make it easy for production organizations to 
substitute their processor-specific code for default 
ANSI/ISO C generated by Real-Time Workshop 
Embedded Coder. 

The second technology involves Processor-in-the-Loop 
(PIL) APIs that let engineers develop an automated test 
environment for running a model in cosimulation with the 
actual generated and cross-compiled production code 
on the target microprocessor or instruction set simulator. 

Using both technologies together allows engineers to 
generate and verify highly optimized target code in a 
way that is generic and customizable. This flexibility is 
important, since every organization has unique hardware 
and software needs that point solutions and add-on 
products from vendors cannot always address. 
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